Metallurgical and Materials Transactions A

, Volume 48, Issue 3, pp 1092–1102 | Cite as

Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625

  • Johnnatan Rodriguez Fernandez
  • Antonio J. Ramirez


Microstructure evolution during friction stir welding (FSW) of mild steel and Ni-based alloy 625 was studied. Regarding the Ni-based alloy, the welding process led to grain refinement caused by discontinuous and continuous dynamic recrystallization, where bulging of the pre-existing grains and subgrain rotation were the primary mechanisms of recrystallization. In the steel, discontinuous dynamic recrystallization was identified as the recovery process experienced by the austenite. Simple shear textures were observed in the regions affected by the deformation of both materials. Although the allotropic transformation obscured the deformation history, the thermo-mechanically affected zone was identified in the steel by simple shear texture components. A new methodology for the study of texture evolution based on rotations of the slip systems using pole figures is presented as an approximation to describe the texture evolution in FSW.


Slip System Friction Stir Welding Simple Shear Friction Stir Welding Texture Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge Petrobras (Contract Number 0050.0050438.09.9) for financial support along with the Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Richard W. Fonda from the Naval Research Laboratory and Hamilton FG Abreu from the Federal University of Ceará for the helpful research discussions.


  1. 1.
    M. Shahzad, A.H. Qureshi, H. Waqas, N Hussain: Mater. Des., 2011, vol. 32, pp. 5154–58.CrossRefGoogle Scholar
  2. 2.
    R.S. Mishra, Z.Y Ma: Mater. Sci. Eng. R., 2005 50: 1–78.CrossRefGoogle Scholar
  3. 3.
    R. Nandan, T. Debroy, H.K.D.H. Bhadeshia: Prog. Mater Sci., 2008, vol. 53, pp. 980–1023.CrossRefGoogle Scholar
  4. 4.
    K. Colligan: Weld. J., 1999, pp. 229–37Google Scholar
  5. 5.
    Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58.CrossRefGoogle Scholar
  6. 6.
    H.K.D.H. Bhadeshi, T. Debroy: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 193-196.CrossRefGoogle Scholar
  7. 7.
    P.B Prangnell, C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179–92.CrossRefGoogle Scholar
  8. 8.
    Q. Guo, D. Li, S. Guo, H. Peng, J. Hu: J. Nucl. Mater., 2011, vol. 414, pp. 440–50.CrossRefGoogle Scholar
  9. 9.
    A. Momeni, K. Dehghani: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1448–54.CrossRefGoogle Scholar
  10. 10.
    D.P Field, T.W. Nelson, Y. Hovanski, K.V Jata: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2869–77.CrossRefGoogle Scholar
  11. 11.
    R.W. Fonda, J.F Bingert: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1487–99.CrossRefGoogle Scholar
  12. 12.
    R.W. Fonda, J.F Bingert: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3593–604.CrossRefGoogle Scholar
  13. 13.
    R.W. Fonda, J.F Bingert: Scr. Mater., 2007, vol. 57, pp. 1052–55.CrossRefGoogle Scholar
  14. 14.
    U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1962–69.CrossRefGoogle Scholar
  15. 15.
    K. Oh-Ishi, A.P. Zhilyaev, T.R. McNelley: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2239–51.CrossRefGoogle Scholar
  16. 16.
    R.W. Fonda, K.E. Knipling: Sci. Technol. Weld. Join., 2011, vol. 4, pp. 288–94.CrossRefGoogle Scholar
  17. 17.
    S. Mironov, Y.S Sato, H. Kokawa: Acta Mater., 2008, vol. 56, pp. 2602–14.CrossRefGoogle Scholar
  18. 18.
    . Rodriguez, A.J. Ramirez: Sci. Technol. Weld. Joining, 2014, vol. 19 4, pp. 343–49.CrossRefGoogle Scholar
  19. 19.
    T.J. Lienert, J.R. Stellwag, B.B. Grimmett, R.W. Warke: Weld J. 2003, 82: pp. 1S–9SCrossRefGoogle Scholar
  20. 20.
    H. Fujii, L. Cui, M. Maeda, K. Nakata, K. Nogi: Mater. Sci. Eng. A, 2006, vol. 429, pp. 50–57.CrossRefGoogle Scholar
  21. 21.
    J. Rodriguez, A.J. Ramirez: Mater. Charact., 2015, vol. 110, pp. 126–35.CrossRefGoogle Scholar
  22. 22.
    R. El-Koussy, V.P. Polukhin: J. Mech. Work. Tech., 1978, vol. 2, pp. 145–60.CrossRefGoogle Scholar
  23. 23.
    S. Nafisi, M.A Arafin, L. Collins, J. Szpunar: Mater. Sci. Eng. A, 2012, vol. 531, pp. 2–11.CrossRefGoogle Scholar
  24. 24.
    U.F. Kocks, C.N. Tomé, H.R. Wenk: Texture and anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties. Cambridge University Press: Cambridge 2005, p. 184.Google Scholar
  25. 25.
    R.S. Ray: Acta Metall. Mater., 1995, vol. 43, pp. 3861–72.CrossRefGoogle Scholar
  26. 26.
    X.L. Li, W. Liu, A. Godfrey, D. Juul Jensen, Q. Liu. Acta Mater., 2007, vol. 55, pp 3531–40CrossRefGoogle Scholar
  27. 27.
    A.M. Elwazri, P. Wanjara, S. Yue: Mater. Sci. Eng. A, 2003, vol. 339, pp. 209–15.CrossRefGoogle Scholar
  28. 28.
    A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson: Mater. Sci. Eng. A, 2008, vol. 485, pp. 664–72.CrossRefGoogle Scholar
  29. 29.
    D. Li, Q. Guo, S. Guo, H. Peng, Z. Wu: Mater. Des., 2011, vol. 32, pp. 696–705.CrossRefGoogle Scholar
  30. 30.
    F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena. Second Edition. Elsevier: Amsterdam 2004.Google Scholar
  31. 31.
    N.M. Lopez, A. Salinas. J Iron Steel Res Int., 2016, vol 23(3), pp. 261–69.CrossRefGoogle Scholar
  32. 32.
    I. Kestens, J.J. Jonas. In: ASM Handbook, Volume 14A. Transformation and Recrystallization Textures Associated with Steel Processing. 9th Edition. ASM International. 2005.Google Scholar
  33. 33.
    B. Nelson, C. Soresen: Friction stir welding and processing VI. The Minerals, Metals & Materials Society, 2011, pp. 113–20.Google Scholar
  34. 34.
    G.E. Dieter. Mechanical Metallurgy. New York, McGraw-Hill, 1988.Google Scholar
  35. 35.
    Y. Sato, T.W. Nelson, C.J. Sterling. Acta Mater., 2005, vol, 53, pp. 637–45.CrossRefGoogle Scholar
  36. 36.
    Y. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan, T. Hashimoto: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 941–48.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Johnnatan Rodriguez Fernandez
    • 1
    • 2
  • Antonio J. Ramirez
    • 1
    • 2
    • 3
  1. 1.Brazilian Nanotechnology National LaboratoryCampinasBrazil
  2. 2.School of Mechanical EngineeringUniversity of CampinasCampinasBrazil
  3. 3.The Ohio State UniversityColumbusUSA

Personalised recommendations