Metallurgical and Materials Transactions A

, Volume 48, Issue 2, pp 809–827 | Cite as

Effect of Phase Contiguity and Morphology on the Evolution of Deformation Texture in Two-Phase Alloys

  • N. P. Gurao
  • Satyam Suwas


Deformation texture evolution in two-phase xFe-yNi-(100-x-y)Cr model alloys and Ti-13Nb-13Zr alloy was studied during rolling to develop an understanding of micro-mechanisms of deformation in industrially relevant two-phase FCC-BCC steels and HCP-BCC titanium alloys, respectively. It was found that volume fraction and contiguity of phases lead to systematic changes in texture, while morphology affects the strength of texture. There was a characteristic change in texture from typical Brass-type to a weaker Copper-type texture in the austenite phase accompanied with a change from alpha fiber to gamma fiber in ferrite phase for Fe-Ni-Cr alloys with increase in fraction of harder ferrite phase. However, similar characteristic texture evolution was noted in both α and β phase irrespective of the different initial morphologies in Ti-13Nb-13Zr alloy. Viscoplastic self-consistent simulations with two-phase scheme were able to qualitatively predict texture evolution in individual phases. It is proposed that the transition from iso-strain-type behavior for equiaxed microstructure at low strain to iso-stress-type behavior at higher strain is aided by the presence of higher volume fraction of the second phase and increasing aspect ratio of individual phases in two-phase alloys.


Pole Figure Austenite Phase Ferrite Phase Orientation Distribution Function Ferrite Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Dr. S. K. Bhaumik of National Aeronautical Laboratory, Bangalore, India, for providing the assistance in melting the alloys used in the present study. The authors are grateful to Dr. C. N. Tome and Dr. R. A. Lebensohn (Los Alamos National Laboratory, USA) for providing VPSC-7 code. NPG had useful discussions with Dr. K. S. Suresh. The authors thank the Department of Science and Technology, Government of India, for providing characterization facilities at the Institute X-ray facility and Advanced Facility for Microscopy and Microanalysis at Indian Institute of Science, Bangalore, India.


  1. 1.
    U.F. Kocks, C.N. Tome, H.-R. Wenk, Texture and Anisotropy, Cambridge University Press, Cambridge, 1998, pp. 178-208.Google Scholar
  2. 2.
    Y. Tamota, K. Kuroki, T. Mori, I. Tamura, Mater. Sci. Eng., 1976, vol. 24, pp. 85-94.CrossRefGoogle Scholar
  3. 3.
    K. Morii, H. Mecking, G. Lutjering, Y. Scripta Metall., 1986, vol. 20, pp. 1795-1800.CrossRefGoogle Scholar
  4. 4.
    S. Ankem, H. Margolin, Metall. Trans. A, 1986, vol. 17, pp. 2209-26.CrossRefGoogle Scholar
  5. 5.
    S. Ankem, H. Margolin, C.A. Greene, B.W. Neuberger, P.G. Oberson, Prog. Mater. Sci., 2006, vol. 51, pp. 632-709.CrossRefGoogle Scholar
  6. 6.
    D. Mattisen, D. Raabe, F. Heringhaus, Acta Mater., 1999, vol. 47, pp. 1627-34.CrossRefGoogle Scholar
  7. 7.
    J. Wang, A. Misra, Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 20-28.CrossRefGoogle Scholar
  8. 8.
    J.J. Moverare, M. Oden, Metall. Mater. Trans. A, 2002, vol. 33, pp. 57-71.CrossRefGoogle Scholar
  9. 9.
    C. Mapelli, S. Barella, R. Venturin, ISIJ International, 2005, vol. 45, pp. 1727-35.CrossRefGoogle Scholar
  10. 10.
    N. Jia, R.L. Peng, Y.D. Wang, S. Johansson, P.K. Liaw, Acta Mater., 2008, vol. 56, pp. 782-93.CrossRefGoogle Scholar
  11. 11.
    H. Inoue, S. Fukwshima, N. Inakazu, Mater. Trans. JIM, 1992, vol. 33, pp. 129-37.CrossRefGoogle Scholar
  12. 12.
    N. Gey, M. Humbert, M.J. Phillip, Y. Combres, Mater. Sci. Eng. A, 1996, vol. 219, pp. 80-88.CrossRefGoogle Scholar
  13. 13.
    S. Suwas, R. K. Ray, Metall. Mater. Trans. A, 2000, vol. 31, pp. 2339-50.CrossRefGoogle Scholar
  14. 14.
    S. Suwas, R.K. Ray, A.K. Singh, S. Bhargava, Acta Mater., 1999, vol. 47, pp. 4585-98.CrossRefGoogle Scholar
  15. 15.
    H.-G. Brokmeier, Mater. Sci. Eng. A, 1994, vol. 175, pp. 131-139.CrossRefGoogle Scholar
  16. 16.
    R.A. Lebensohn, G.R. Canova, Acta Mater., 1997, vol. 45, pp. 3687-94.CrossRefGoogle Scholar
  17. 17.
    H.-G. Brokmeier, R.E. Bolmaro, J.A. Signorelli, A. Fourty, Physica B: Condensed Matter, 2000, vol. 276-278, pp. 888-889.CrossRefGoogle Scholar
  18. 18.
    B. Commentz, C. Hartig, H. Mecking, Comp. Mater. Sci., 1999, vol. 16, pp. 237-47.CrossRefGoogle Scholar
  19. 19.
    C. Hartig, H. Mecking, Comp. Mater. Sci., 2005, vol. 32, pp. 370-377.CrossRefGoogle Scholar
  20. 20.
    Y. Schneider, A. Bertram, T. Bohlke, C. Hartig, Comp. Mater. Sci., 2010, vol. 48, pp. 456-65.CrossRefGoogle Scholar
  21. 21.
    R.E. Bolmaro, A. Fourty, J.W. Signorelli, H.-G. Brokmeier, Model. Simu. Mater. Sci. Eng., 2006, vol. 14, pp. 1-20.Google Scholar
  22. 22.
    C.W. Sinclair, J.D. Embury, G.C. Weatherly, K.T. Conlon, O. Engler, Mater. Sci. Tech., 2003, vol. 19, pp. 1321-29.CrossRefGoogle Scholar
  23. 23.
    M. Kiran Kumar, I. Samajdar, N. Venkatramani, G.K. Dey, R. Tewari, D. Srivastava, S. Banerjee, Acta Mater., 2003, vol. 51, pp. 625-40.CrossRefGoogle Scholar
  24. 24.
    J.L.W. Warwick, J. Coakley, S.L Raghunathan, R.J Talling, D. Dye, Acta Mater., 2012, vol. 60, pp. 4117-27.CrossRefGoogle Scholar
  25. 25.
    J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcaguotto, Acta Mater., 2011, vol. 59, pp. 4387-94.CrossRefGoogle Scholar
  26. 26.
    R. Garg, S. Ranganathan, S. Suwas, Mater. Sci. Eng. A, 2010, vol. 527, pp. 4582-92.CrossRefGoogle Scholar
  27. 27.
    D Raabe, K. Mivake, H. Takahara, Mater. Sci. Eng. A, 2009, vol. 291, pp. 186-97.CrossRefGoogle Scholar
  28. 28.
    D. Raabe, S. Ohsaki, K. Hono, Acta Mater., 2009, vol. 57, pp. 5254-63.CrossRefGoogle Scholar
  29. 29.
    N. Jia, F. Roters, P. Eisenlohr, D. Raabe, X. Zhao, Acta Mater., 2013, vol. 61, pp. 4591-4606.CrossRefGoogle Scholar
  30. 30.
    J. Wang, I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, Scripta Mater., 2001, vol. 64, pp. 1083-86.CrossRefGoogle Scholar
  31. 31.
    P.M. Anderson, J.F. Bingert, A. Misra, J.P. Hirth, Acta Mater., 2003, vol. 51, pp. 6059-75.CrossRefGoogle Scholar
  32. 32.
    A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, H. Kung, Acta Mater., 2004, vol. 52, pp. 2387-94.CrossRefGoogle Scholar
  33. 33.
    A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater., 2006, vol. 53, pp. 4817-24.CrossRefGoogle Scholar
  34. 34.
    I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, D.J. Alexander, C.T. Necker, Int. J. Plast., 2011, vol. 27, pp. 121-46.CrossRefGoogle Scholar
  35. 35.
    I.J. Beyerlein, J.R. Mayeur, S Zheng, N.A. Mara, J. Wang, A. Misra, Proc. Nat. Acad. Sci., 2014, vol. 111, pp. 4386-90.CrossRefGoogle Scholar
  36. 36.
    C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, D. Raabe, Int. J. Plast., 2014, vol. 63, pp. 198-210.CrossRefGoogle Scholar
  37. 37.
    K. Pawlik, Phys Stat. Sol. (B), 1986, vol. 134, pp. 477-83.CrossRefGoogle Scholar
  38. 38.
    C.N. Tomè, G.R. Canova, U.F. Kocks, N. Christodoulou, J.J. Jonas, Acta Metall., 1984, vol. 32, pp. 1637-53.CrossRefGoogle Scholar
  39. 39.
    R.A. Lebensohn, C.N. Tomè, Acta Metall. Mater., 1993, vol. 41, pp. 2611-24.CrossRefGoogle Scholar
  40. 40.
    R.A. Lebensohn, G.R. Canova, Acta Mater., 1997, vol. 45, pp. 3687-94.CrossRefGoogle Scholar
  41. 41.
    G. Kurdjumov, G. Sachs, Zeitschridft fuer Physik, 1930, vol. 64, pp. 325-43.CrossRefGoogle Scholar
  42. 42.
    W.G. Burgers, Physica, 1934, vol. 1, pp. 561-86.CrossRefGoogle Scholar
  43. 43.
    G. Wasserman, Z. Metallkunde, 1963, vol. 54, pp. 61-65.Google Scholar
  44. 44.
    T. Leffers, A. Grum-Jensen, Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 314-19.Google Scholar
  45. 45.
    O. Engler, Acta Mater., 2000, vol. 48, pp. 4827-40.CrossRefGoogle Scholar
  46. 46.
    E. El-Danaf, S.R. Kalidindi, R.D. Doherty, C. Necker, Acta Mater., 2002, vol. 48, pp. 2665-73.CrossRefGoogle Scholar
  47. 47.
    T. Leffers, R.K. Ray, Prog. Mater. Sci., 2009, vol. 54, pp. 351-96.CrossRefGoogle Scholar
  48. 48.
    C. Donadille, R. Valle, P. Dervin, R. Penelle, Acta Metall., 1989, vol. 37, pp. 1547-71.CrossRefGoogle Scholar
  49. 49.
    C.D. Singh, V. Ramaswamy, C. Suryanarayana, Textures and Microstructures, 1992, vol. 9, pp. 101-21.CrossRefGoogle Scholar
  50. 50.
    T. Leffers, D. Juul Jensen: Proc. Inter. Conf. on Texture of Materials-7, Netherlands Society for Materials Science, Zwijndrecht, 1984, pp. 805–10.Google Scholar
  51. 51.
    J.W. Christian, S. Mahajan, Prog. Mater. Sci., 1995, vol. 39, pp. 1-157.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations