Metallurgical and Materials Transactions A

, Volume 47, Issue 12, pp 5675–5679 | Cite as

Effects of Friction Stir Processing on the Phase Transformation and Microstructure of TiO2-Compounded Ti-6Al-4V Alloy

  • Zihao Ding
  • Chengjian Zhang
  • Lechun Xie
  • Lai-Chang Zhang
  • Liqiang Wang
  • Weijie Lu


With the aim to improve the surface wear resistance properties of Ti-6Al-4V alloy as well as its biocompatibility as implants in human bodies, TiO2 particles are introduced to strengthen the properties of Ti-6Al-4V through the effect of friction stir processing. The effects of friction stir processing on the phase transformation and microstructure of TiO2-compounded Ti-6Al-4V are investigated systematically. Grain refinement in the stirring zone and phase transformation in the matrix material are observed and discussed in detail. The study provides a new insight on the desired properties of Ti-6Al-4V for biomedical applications using friction stir processing.


TiO2 Transition Zone Base Material Composite Layer TiO2 Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


This work was supported by the projects of the National Natural Science Foundation of China under Grant Nos. 51302168 and 51674167, Shanghai Pujiang Program (Grant No: 15PJD017), Medical Engineering Cross Research Foundation of Shanghai Jiao Tong University under Grant No. YG2014MS02, and SMC-ChenXing Project Shanghai Jiao Tong University.


  1. 1.
    Y. Okazaki, S. Rao, Y. Ito, T. Tateishi: Biomaterials, 1998, vol. 19(13), pp. 1197–1215.CrossRefGoogle Scholar
  2. 2.
    E. Eisenbarth, D. Velten, M. Muller, R. Thull, J. Breme: Biomaterials, 2004, vol. 25(26), pp. 5705–13.CrossRefGoogle Scholar
  3. 3.
    C. Leyens, M. Peters: Titanium and titanium alloys, Wiley Online Library, Weinheim, 2003, pp. 105–07.CrossRefGoogle Scholar
  4. 4.
    K.S. Chan, M. Koike, T. Okabe: Acta Biomater., 2007, vol. 3(3), pp. 383–89.CrossRefGoogle Scholar
  5. 5.
    S.H. Teoh: Int. J. Fatigue, 2000, vol. 22(10), pp. 825–37.CrossRefGoogle Scholar
  6. 6.
    J.I. Qazi, H.J. Rack: Mater. Sci. Eng. C, 2006, vol. 26(8), pp. 1269–77.CrossRefGoogle Scholar
  7. 7.
    R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee: Scripta Mater., 1999, vol. 42(2), pp. 163–68.CrossRefGoogle Scholar
  8. 8.
    Z.Y. Ma, S.R. Sharma, R.S. Mishra, M.W. Mahoney: Mater. Sci. Forum, 2003, vol. 426, pp. 2891–96.CrossRefGoogle Scholar
  9. 9.
    R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50(1–2), pp. 1–78.CrossRefGoogle Scholar
  10. 10.
    A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei-Hanzaki: Mater. Sci. Eng. A, 2009, vol. 500(1–2), pp. 84–91.CrossRefGoogle Scholar
  11. 11.
    R.S. Mishra, D. Manisha, J.W. Newkirk: Scripta Mater., 2007, vol. 56(6), pp. 541–4.CrossRefGoogle Scholar
  12. 12.
    A. Kurt, I. Uygur, E. Cete: J. Mater. Process. Technol., 2011, vol.211(3), pp. 313–17.CrossRefGoogle Scholar
  13. 13.
    J. Grotberg, A. Hamlekhan, A. Butt, S. Patel, D. Royhman, T. Shokuhfar, C. Sukotjo, C. Takoudis, M.T. Mathew: Mater. Sci. Eng. C, 2016, vol. 59, pp. 677–89.CrossRefGoogle Scholar
  14. 14.
    J.J. Yin, J. Liu, M. Ehrenshaft, J.E. Roberts, P.P. Fu, R.P. Mason, B. Zhao: Toxicol. Appl. Pharmacol., 2012, vol. 263(1), pp. 81–88.CrossRefGoogle Scholar
  15. 15.
    S.C. Roy, M. Paulose, C.A. Grimes: Biomaterials, 2007, vol. 28(31), pp. 4667–72.CrossRefGoogle Scholar
  16. 16.
    C. Eriksson, J. Lausmaa, H. Nygren: Biomaterials, 2001, vol. 22(14), pp. 1987–96.CrossRefGoogle Scholar
  17. 17.
    B.C. Yang, M. Uchida, H.M. Kim, X.D. Zhang, T. Kokubo: Biomaterials, 2004, vol. 25(6), pp. 1003–10.CrossRefGoogle Scholar
  18. 18.
    T.F. Keller, J. Reichert, T. Tam Pham, R. Adjiski, L. Spiess, L. Berzina-Cimdina, K.D. Jandt, J. Bossert: Acta Biomater., 2013, vol. 9(3), pp. 5810–20.CrossRefGoogle Scholar
  19. 19.
    X.Y. Liu, P.K. Chu, C.X. Ding: Mater. Sci. Eng. R, 2004, vol. 47(3–4), pp. 49–121.CrossRefGoogle Scholar
  20. 20.
    S.B. Goodman: Biomaterials, 2007, vol. 28(34), pp. 5044–48.CrossRefGoogle Scholar
  21. 21.
    V. Sharma, U. Prakash, B.M. Kumar: J. Mater. Process. Technol., 2015, vol. 224, pp. 117–34.CrossRefGoogle Scholar
  22. 22.
    L. Wang, J. Qu, L. Chen, Q. Meng, L.-C. Zhang, J. Qin, D. Zhang, W. Lu: Metall. Trans. A, 2015, vol. 46(11), pp. 4813–18.CrossRefGoogle Scholar
  23. 23.
    Z.Y. Ma, A.L. Pilchak, M.C. Juhas, J.C. Williams: Scr. Mater., 2008, vol. 58(5), pp. 361–66.CrossRefGoogle Scholar
  24. 24.
    B. Li, Y.F. Shen, W.Y. Hu, L. Luo: Surf. Coat. Technol., 2014, vol. 239, pp. 160–70.CrossRefGoogle Scholar
  25. 25.
    X. Zhang, Q. Wang, W. Mo: Physical Metallurgy and Heat Treatment of Titanium, Metallurgical Industry Press, Beijing, 2009, pp. 213–25.Google Scholar
  26. 26.
    X. Zhang, Y. Zhao, C. Bai: Titanium Alloy and its Application, Chemical Industry Press, Beijing, 2005, pp. 64–68.Google Scholar
  27. 27.
    H.-J. Liu, Z. Li: Transactions of Nonferrous Metals Society of China, 2010, vol. 20(10), pp. 1873–78.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Zihao Ding
    • 1
    • 2
  • Chengjian Zhang
    • 1
    • 2
  • Lechun Xie
    • 1
    • 2
  • Lai-Chang Zhang
    • 3
  • Liqiang Wang
    • 1
    • 2
  • Weijie Lu
    • 1
    • 2
  1. 1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.Collaborative Innovation Center for Advanced Ship and Deep-Sea ExplorationShanghaiP.R. China
  3. 3.School of EngineeringEdith Cowan UniversityPerthAustralia

Personalised recommendations