Metallurgical and Materials Transactions A

, Volume 48, Issue 1, pp 178–187 | Cite as

Mechanical Properties and Microstructural Characterization of Cu-4.3 Pct Sn Fabricated by Selective Laser Melting

  • Anthony P. VenturaEmail author
  • C. Austin Wade
  • Gregory Pawlikowski
  • Martin Bayes
  • Masashi Watanabe
  • Wojciech Z. Misiolek


Components were fabricated via selective laser melting (SLM) of prealloyed Cu-4.3 pct Sn powder and heat treated at 873 K and 1173 K (600 °C and 900 °C) for 1 hour. Tensile testing, conductivity measurement, and detailed microstructural characterization were carried out on samples in the as-printed and heat-treated conditions. Optimization of build parameters resulted in samples with around 97 pct density with a yield strength of 274 MPa, an electrical conductivity of 24.1 pct IACS, and an elongation of 5.6 pct. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a submicron cellular solidification substructure. Nanometer scale tin dioxide particles identified via X-ray diffraction were found throughout the structure in the tin-rich intercellular regions.


Copper Alloy Weld Pool Weld Line Selective Laser Melting Grain Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank TE Connectivity, Ltd. for the partial funding of this research along with collaboration throughout the study. The authors also thank the Loewy Family Foundation for financially supporting this project and two of the authors (APV, as a Loewy Graduate Fellow, and WZM, through the Loewy Professorship at Lehigh University).

This material is based on research sponsored by the Air Force Research Laboratory under Agreement No. FA8650-12-2-7230 and by the Commonwealth of Pennsylvania, acting through the Department of Community and Economic Development, under Contract No. C000053981. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. Any opinions, views, findings, recommendations, and conclusions contained herein are those of the author(s) and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory, the U.S. Government, the Commonwealth of Pennsylvania, Carnegie Mellon University, or Lehigh University.


  1. 1.
    I. Gibson, D. Rosen, and B. Stucker: Additive Manufacturing Technologies,1st ed., Springer, New York, NY, 2010, p. 459.CrossRefGoogle Scholar
  2. 2.
    J.P. Kruth et al.: Rap. Prototyp. J., 2005, vol. 11 (1), pp. 26–36.CrossRefGoogle Scholar
  3. 3.
    D. Ramirez et al.: Acta Mater., 2011, vol. 59 (10), pp. 4088–99.CrossRefGoogle Scholar
  4. 4.
    M. Lodes, R. Guschlbauer, and C. Körner: Mater. Lett., 2015, vol. 143, pp. 298–301.CrossRefGoogle Scholar
  5. 5.
    N. Tolochko et al.: Rap. Prototyp. J., 2000, vol. 6 (3), pp. 155–61.CrossRefGoogle Scholar
  6. 6.
    S. Pogson et al.: Rap. Prototyp. J., 2003, vol. 9 (5), pp. 334–43.CrossRefGoogle Scholar
  7. 7.
    D. Gu et al.: Int. Mater. Rev., 2012, vol. 57 (3), pp. 133–64CrossRefGoogle Scholar
  8. 8.
    B. Song et al.: Front. Mech. Eng., 2015, vol. 10 (2), pp. 111–25.CrossRefGoogle Scholar
  9. 9.
    L. Loh et al.: Int. J. Heat Mass Transfer, 2015, vol. 80, pp. 288–300.CrossRefGoogle Scholar
  10. 10.
    L. Thijs et al.: Acta Mater., 2010, vol. 58 (9), pp. 3303–12.CrossRefGoogle Scholar
  11. 11.
    E. Yasa and J.P. Kruth: Proc. Eng., 2011, vol. 19, pp. 389–95.CrossRefGoogle Scholar
  12. 12.
    W. Shifeng et al.: J. Mater. Process. Technol., 2014, vol. 214 (11), pp. 2660–67.CrossRefGoogle Scholar
  13. 13.
    B. Vrancken et al.: J. Alloys Compds., 2012, vol. 541, pp. 177–85.CrossRefGoogle Scholar
  14. 14.
    A.A. Antonysamy et al.: Mater. Charact., 2013, vol. 84, pp. 153–68.CrossRefGoogle Scholar
  15. 15.
    J. Donoghue et al.: Mater. Charact., 2016, vol. 114, pp. 103–14.CrossRefGoogle Scholar
  16. 16.
    L. Thijs et al.: Acta Mater., 2013, vol. 61 (5), pp. 1809–19.CrossRefGoogle Scholar
  17. 17.
    T. Niendorf et al.: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 794–96.CrossRefGoogle Scholar
  18. 18.
    J. Davis: ASM Specialty Handbook: Copper and Copper Alloys, 1st ed., ASM International, Materials Park, OH, 2001, pp. 3–5 and 32–50.Google Scholar
  19. 19.
    S. Kou: Welding Metallurgy, 1st ed., John Wiley & Sons, Hoboken, NJ, 2003, p. 478.Google Scholar
  20. 20.
    T. Kals and R. Eckstein: J. Mater. Process. Technol., 2000, vol. 103 (1), pp. 95–101.CrossRefGoogle Scholar
  21. 21.
    C.H. Suh, Y.C. Jung, and Y.S. Kim: J. Mater. Sci. Technol., 2010, vol. 24 (10), pp. 2091–98.Google Scholar
  22. 22.
    B. Vrancken et al.: Solid Freeform Fabrication Symp. Proc., 2013, pp. 393–407.Google Scholar
  23. 23.
    P. Mercelis and J.P. Kruth: Rap. Prototyp. J., 2006, vol. 12 (5), pp. 254–65.CrossRefGoogle Scholar
  24. 24.
    H. McQueen and W.J M. G Tegart: Sci. Am., 1975, vol. 232 (4), pp. 116–25.Google Scholar
  25. 25.
    H. Ellingham: J. Soc. Chem. Ind., 1944, vol. 63 (5), pp. 125–60.CrossRefGoogle Scholar
  26. 26.
    D. Porterling and K. Easterling: Phase Transformations in Metals and Alloys, 3rd ed., Boca Raton, FL, 2009, pp. 100–04.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Anthony P. Ventura
    • 1
    Email author
  • C. Austin Wade
    • 1
    • 2
  • Gregory Pawlikowski
    • 3
  • Martin Bayes
    • 3
  • Masashi Watanabe
    • 1
  • Wojciech Z. Misiolek
    • 1
  1. 1.Whitaker Lab, Materials Science and Engineering DepartmentLehigh UniversityBethlehemUSA
  2. 2.Materials Performance CentreUniversity of ManchesterManchesterUK
  3. 3.Tyco Electronics CorporationA TE Connectivity CompanyHarrisburgUSA

Personalised recommendations