Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 12, pp 6645–6654 | Cite as

Substructural Properties and Anisotropic Peak Broadening in Zn1−x Mn x Te Films Determined by a Combined Methodology Based on SEM, HRTEM, XRD, and HRXRD

  • C. Martinez-Tomas
  • O. Klymov
  • S. Agouram
  • D. Kurbatov
  • A. Opanasyuk
  • V. Muñoz-Sanjosé
Article

Abstract

Lattice deformation and extended defects such as grain boundaries and dislocations affect the crystalline quality of films and can dramatically change material’s properties. In particular, magnetic and optoelectronic properties depend strongly on these structural and substructural characteristics. In this paper, a combined methodology based on SEM, HRTEM, XRD, and HRXRD measurements is used to determine and assess the structural and substructural characteristics of films. This combined methodology has been applied to Zn1−x Mn x Te films grown on glass substrates by close-spaced vacuum sublimation. Nevertheless the methodology can be applied to a wide variety of materials and could become a useful characterization method which would be particularly valuable in semiconductor growth field. The knowledge of the structural and substructural characteristics can allow not only the optimization of growth parameters, but also the selection of specific samples having the desired characteristics (crystallite size, minimum dislocation content, etc.) for high-quality technological devices.

Keywords

Substrate Temperature Inclination Angle ZnTe Texture Coefficient Substrate Temperature Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to the Central Support Service in Experimental Research (SCSIE), University of Valencia, Spain for providing SEM, XRD, HRXRD, and HRTEM facility. The authors acknowledge funding received from the Spanish Generalitat Valenciana (Projects Nos. ISIC/2012/008 and PrometeoII/2015-004) and Spanish MINECO (Project No. TEC2014-53727-C2-1-R). This work was also supported by the Ministry of Education and Science of Ukraine (Project No. 0116U006813).

References

  1. 1.
    J. P. Hirth, J. Lothe: Theory of dislocations, McGraw-Hill, New York, 1968.Google Scholar
  2. 2.
    A.J.C. Wilson: Il Nuovo Cimento, 1955, vol.1, pp. 277–83.CrossRefGoogle Scholar
  3. 3.
    B. E. Warren B.L. Averbach: J. Appl. Phys. 1950, vol. 21, pp. 595–99.CrossRefGoogle Scholar
  4. 4.
    G.K. Williamson, W.H. Hall: Acta Metall. 1953, vol. 1, pp. 22–31.CrossRefGoogle Scholar
  5. 5.
    T. Ungar, A. Borbely: Appl. Phys. Lett. 1996, vol. 69, pp. 3173–75.CrossRefGoogle Scholar
  6. 6.
    Révész A, Ungár T, Borbely A and Lendvai T: J. Nanostruc. Mater. 1988, vol. 7, pp. 779–88.CrossRefGoogle Scholar
  7. 7.
    T. Story: Acta Phys. Pol. A, 1998, vol. 94, pp. 189–97.CrossRefGoogle Scholar
  8. 8.
    D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyński, S. Koleśnik, T. Dietl, B. Barbara, D. Dufeu: Phys. Rev. B, 2001, vol. 63, p. 085201.CrossRefGoogle Scholar
  9. 9.
    H.J. Masterson, J.G. Lunney: Appl. Surf. Sci. 1995, vol. 86, pp. 154–59.CrossRefGoogle Scholar
  10. 10.
    G. Romera-Guereca, J. Lichtenberg, A. Hierlemann, D. Poulikakos, B. Kang: Exp. Therm. Fluid Sci. 2006, vol. 30, 829-36.CrossRefGoogle Scholar
  11. 11.
    D. Zeng, W. Jie, H. Zhou, Y. Yang, Nucl. Instrum. Methods A, 2010, vol. 614, pp. 68–71.CrossRefGoogle Scholar
  12. 12.
    A. Zozime, M. Seibt, J. Ertel, A. Tromson-Carli, R. Druilhe, C. Grattepain, R. Triboulet: J. Cryst. Growth, 2003, vol. 249, pp. 15–22.CrossRefGoogle Scholar
  13. 13.
    [13] J. Huang, L. J. Wang, K. Tang, Run Xu: Phys. Procedia, 2012, vol. 32, pp. 161–64.CrossRefGoogle Scholar
  14. 14.
    G. Kostorz,H. A. Calderon,J. L. Martin: Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III (eBook), Elsevier, Kobo Edition, Lausanne, 2013.Google Scholar
  15. 15.
    D. Kurbatov, A. Opanasyuk, S.M. Duvanov, A.G. Balogh, H. Khlyap: Solid State Sci., 2011, vol. 13, pp. 1068–71.CrossRefGoogle Scholar
  16. 16.
    V. Kosyak, A. Opanasyuk, P.M. Bukivskij, Y.P. Gnatenko: J. Cryst. Growth, 2010, vol. 312, pp. 1726–30.CrossRefGoogle Scholar
  17. 17.
    P. F. Fewster: Rep. Prog. Phys. 1996, vol. 59, pp. 1339–1407.CrossRefGoogle Scholar
  18. 18.
    M. Imamura, T. Yamaguchi: J. Phys. Conf. Ser., 2010, vol. 200, pp. 062009.CrossRefGoogle Scholar
  19. 19.
    R. D. Shannon: Acta Cryst. A, 1976, vol. 32, pp. 751–67.CrossRefGoogle Scholar
  20. 20.
    A. Avdonin, L. Van Khoi, W. Pacuski, V. Domukhovski, R.R. Galazka: Acta Phys. Pol. A, 2007, vol. 112, pp. 407–414.CrossRefGoogle Scholar
  21. 21.
    E. Dynowska, E. Przezdziecka: J. Alloys Compd., 2005, vol. 401, pp. 265–71.CrossRefGoogle Scholar
  22. 22.
    E. Janik, E. Dynowska, J. Bak-Misiuk, M. Leszczyński, W. Szuszkiewicz, T. Wojtowicz, G. Karczewski, A.K. Zakrzewski, J. Kossut: Thin Solid Films, 1995, vol. 267, pp. 74–78.CrossRefGoogle Scholar
  23. 23.
    [23] P. Djemia, Y. Roussign, A. Stashkevich: Acta Phys. Pol., 2004, vol. 106, pp. 239–47.CrossRefGoogle Scholar
  24. 24.
    [24] G.B. Harris: Philos. Mag. 1952, vol. 43, pp. 113–23.CrossRefGoogle Scholar
  25. 25.
    W. Mahmood, N.A. Shah: Curr. Appl. Phys., 2014, vol. 14, pp. 282–86.CrossRefGoogle Scholar
  26. 26.
    C.V. Thompson, R. Carel: Mater. Sci. Eng. B, 1995, vol. 32 pp. 211–19.CrossRefGoogle Scholar
  27. 27.
    E. Mittemeijer, Z.U. Welzel: Kristallogr. 2006, vol. 223, pp. 552–60.Google Scholar
  28. 28.
    M.A. Krivoglaz: Theory of X-ray and thermal neutron scattering by real crystals, New York: Plenum Press, 1969.Google Scholar
  29. 29.
    T. Ungár, S. Ott, P.G. Sanders, A. Borbely, J.R. Weertman: Acta Mater. 1998, vol. 46, pp. 3693–99.CrossRefGoogle Scholar
  30. 30.
    T. Ungár: Materials Science Forum, 1998, vol. 278–281, pp. 151–57.CrossRefGoogle Scholar
  31. 31.
    T. Ungar, I. Dragomir-Cernatescu, D. L. Louer, N. Audebrand: J. Phys. Chem. Solids, 2001, vol. 62, pp. 1935–41.CrossRefGoogle Scholar
  32. 32.
    Y. Wang, S.L.I. Chan, R. Amal, Y.R. Shen, K. Kiatkittipong: Adv. X-ray Anal., 2010, vol. 54, pp. 92–100.Google Scholar
  33. 33.
    B.H. Lee: J. Appl. Phys. 1970, vol. 41, pp. 2984–90.CrossRefGoogle Scholar
  34. 34.
    Y. Nishi, and R. Doering: Handbook of Semiconductor Manufacturing Technology, 2nd ed., CRC Press, Boca Raton, 2007.Google Scholar
  35. 35.
    T. Ungar, I. Dragomir, A. Revesz, A. Borbely: J. Appl. Cryst. 1999, vol. 32, pp. 992–1002.CrossRefGoogle Scholar
  36. 36.
    M.P.C. Kalita, K. Deka, J. Das, N. Hazarika, P, Dey, R. Das, S. Paul, T. Sarmah, B.K. Sarma: Mater. Lett. 2012, vol. 87, pp. 84–86.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • C. Martinez-Tomas
    • 1
  • O. Klymov
    • 1
    • 2
  • S. Agouram
    • 1
  • D. Kurbatov
    • 2
  • A. Opanasyuk
    • 2
  • V. Muñoz-Sanjosé
    • 1
  1. 1.Departamento de Física Aplicada y ElectromagnetismoUniversidad de ValenciaBurjassotSpain
  2. 2.Department of Electronics and Computer TechnologySumy State UniversitySumyUkraine

Personalised recommendations