Metallurgical and Materials Transactions A

, Volume 47, Issue 12, pp 5761–5770 | Cite as

Phase Transformations During Solidification of a Laser-Beam-Welded TiAl Alloy—An In Situ Synchrotron Study

  • Jie Liu
  • Peter Staron
  • Stefan Riekehr
  • Andreas Stark
  • Norbert Schell
  • Norbert Huber
  • Andreas Schreyer
  • Martin Müller
  • Nikolai Kashaev
Symposium: Neutron and X-Ray Studies of Advanced Materials VIII

Abstract

An in situ highly time-resolved, high-energy X-ray diffraction investigation was carried out to observe the phase transformations of a TiAl alloy during laser beam welding. The diffraction patterns are recorded every 0.1 seconds by a fast area two-dimensional detector and plotted according to time, yielding the solidification pathway, the solid phase volume fraction, and the lattice parameter variation of different phases during the solidification and cooling process. Moreover, it is the first study that can demonstrate that the α phase without any Burgers orientation relationship, the so-called non-Burgers α, precipitates appear earlier than the Burgers α. The non-Burgers α grains are found to nucleate on the primary borides.

References

  1. 1.
    1. C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, and D.S. Easton: Intermetallics, 1996, vol. 4, pp. 429-40.CrossRefGoogle Scholar
  2. 2.
    2. Y.-W. Kim: Intermetallics, 1998, vol. 6, pp. 623-8.CrossRefGoogle Scholar
  3. 3.
    3. D.E. Larsen, L. Christodoulou, S.L. Kampe, and P. Sadler: Mater. Sci. Eng. A, 1991, vol. 144, pp. 45-9.CrossRefGoogle Scholar
  4. 4.
    4. B.J. Inkson, C.B. Boothroyd, and C.J. Humphreys: J. Phys. Iv., 1993, vol. 3, pp. 397-402.Google Scholar
  5. 5.
    A.B. Godfrey: Ph.D. Dissertation, The University of Birmingham, 1996.Google Scholar
  6. 6.
    6. T.T. Cheng: Intermetallics, 2000, vol. 8, pp. 29-37.CrossRefGoogle Scholar
  7. 7.
    7. D. Hu: Intermetallics, 2001, vol. 9, pp. 1037-43.CrossRefGoogle Scholar
  8. 8.
    8. C.T. Liu and P.J. Maziasz: Intermetallics, 1998, vol. 6, pp. 653-61.CrossRefGoogle Scholar
  9. 9.
    9. U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger: Intermetallics, 2008, vol. 16, pp. 969-78.CrossRefGoogle Scholar
  10. 10.
    10. D. Gosslar, R. Gunther, U. Hecht, C. Hartig, and R. Bormann: Acta Mater., 2010, vol. 58, pp. 6744-51.CrossRefGoogle Scholar
  11. 11.
    11. W.G. Burgers: Physica, 1934, vol. 1, pp. 561-86.CrossRefGoogle Scholar
  12. 12.
    12. D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht: Intermetallics, 2012, vol. 23, pp. 49-56.CrossRefGoogle Scholar
  13. 13.
    13. M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak: Intermetallics, 2013, vol. 32, pp. 12-20.CrossRefGoogle Scholar
  14. 14.
    14. E. Schwaighofer, H. Clemens, S. Mayer, J. Lindemann, J. Klose, W. Smarsly, and V. Guther: Intermetallics, 2014, vol. 44, pp. 128-40.CrossRefGoogle Scholar
  15. 15.
    15. J. Liu, M. Dahmen, V. Ventzke, N. Kashaev, and R. Poprawe: Intermetallics, 2013, vol. 40, pp. 65-70.CrossRefGoogle Scholar
  16. 16.
    16. J. Liu, P. Staron, S. Riekehr, A. Stark, N. Schell, N. Huber, A. Schreyer, M. Müller, and N. Kashaev: Intermetallics, 2015, vol. 62, pp. 27-35.CrossRefGoogle Scholar
  17. 17.
    17. R. Gerling, H. Clemens, and F.P. Schimansky: Adv. Eng. Mater., 2004, vol. 6, pp. 23-38.CrossRefGoogle Scholar
  18. 18.
    18. J. Liu, P. Staron, S. Riekehr, A. Stark, N. Schell, N. Huber, A. Schreyer, M. Müller, and N. Kashaev: Intermetallics, 2015, vol. 62, pp. 27-35.CrossRefGoogle Scholar
  19. 19.
  20. 20.
    20. H.R. Wenk, L. Lutterotti, and S.C. Vogel: Powder Diffr., 2010, vol. 25, pp. 283-96.CrossRefGoogle Scholar
  21. 21.
    21. F. Appel, J.D.H. Paul, and M. Oehring: Gamma Titanium Aluminide Alloys Science and Technology, Weinheim: Wiley, 2011.CrossRefGoogle Scholar
  22. 22.
    22. C. Yang, H. Jiang, D. Hu, A. Huang, and M. Dixon: Scripta Mater., 2012, vol. 67, pp. 85-8.CrossRefGoogle Scholar
  23. 23.
    G. Chen, W. Zhang, Z. Liu, S. Li, and Y. Kim: in Gamma Titanium Aluminides, Y.W. Kim, D.M. Dimiduk, amd M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 371-80.Google Scholar
  24. 24.
    24. L.A. Yeoh, K.D. Liss, A. Bartels, H. Chladil, M. Avdeev, H. Clemens, R. Gerling, and T. Buslaps: Scripta Mater., 2007, vol. 57, pp. 1145-8.CrossRefGoogle Scholar
  25. 25.
    25. J. Liu, V. Ventzke, P. Staron, N. Schell, N. Kashaev, and N. Huber: Metall. Mater. Trans. A, 2014, vol. 45, pp. 16-28.CrossRefGoogle Scholar
  26. 26.
    26. P. Staron, T. Fischer, T. Lippmann, A. Stark, S. Daneshpour, D. Schnubel, E. Uhlmann, R. Gerstenberger, B. Camin, W. Reimers, E. Eidenberger, H. Clemens, N. Huber, and A. Schreyer: Adv. Eng. Mater., 2011, vol. 13, pp. 658-63.CrossRefGoogle Scholar
  27. 27.
    27. T. Pfullmann and P.A. Beaven: Scripta Metall. Mater., 1993, vol. 28, pp. 275-80.CrossRefGoogle Scholar
  28. 28.
    28. D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht: Intermetallics, 2012, vol. 22, pp. 68-76.CrossRefGoogle Scholar
  29. 29.
    29. G. Gottstein: Physical Foundations of Materials Science, Springer, Berlin, 2004.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Jie Liu
    • 1
    • 2
  • Peter Staron
    • 3
  • Stefan Riekehr
    • 1
  • Andreas Stark
    • 3
  • Norbert Schell
    • 3
  • Norbert Huber
    • 3
  • Andreas Schreyer
    • 3
    • 4
  • Martin Müller
    • 1
  • Nikolai Kashaev
    • 1
  1. 1.Institute of Materials ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Robert Bosch GmbHBambergGermany
  3. 3.Institute of Materials ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  4. 4.European Spallation Source ERICLundSweden

Personalised recommendations