Metallurgical and Materials Transactions A

, Volume 47, Issue 12, pp 6384–6393 | Cite as

Dislocation Substructure in the Cold-Rolled Ni-20 Mass Pct Cr Alloy Analyzed by X-ray Diffraction, Positron Annihilation Lifetime, and Transmission Electron Microscopy

  • Mitsuharu YonemuraEmail author
  • Koji Inoue


The systematic change in the dislocation density and characteristics that develop under cold rolling as a simulated deformation was studied in order to examine the fundamental behavior of dislocations in terms of the dislocation substructure formation. In particular, the dislocation density was quantified by X-ray line profile analysis (XLPA), which is effective for quantifying the dislocation density and character; positron annihilation lifetime (PAL), which is sensitive to vacancy-type lattice defects; the Bailey–Hirsch equation from the hardness (Hv); and transmission electron microscopy (TEM). The strain dependency of the dislocation density analyzed by XLPA, PAL, TEM, and Hv showed a similar tendency with an increase in the dislocation. In particular, the dislocation density by XLPA had good agreement with the results of TEM at low strain levels and with PAL at high strain levels. As a result, a combination of these techniques successfully showed the behavior of the dislocation substructure.


Dislocation Density Screw Dislocation Edge Dislocation Equivalent Plastic Strain Dislocation Substructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express their gratitude to Mr. Masahiro Kinoshita of Nippon Steel & Sumitomo Metal Corporation for his technical support.


  1. 1.
    X. Xie, S. Zhao, J. Dong, G.D. Smith, B.A. Baker and S.L. Paatel: Fifth International Conference on Advances in Materials Technology for Fossil Power Plants, EPRI, 2007, pp. 3A–06.Google Scholar
  2. 2.
    J. Wang, J. Dong, M. Zhang and X. Xie: Mater. Sci. Eng. A, 2013, vol. 566, pp. 61–70.CrossRefGoogle Scholar
  3. 3.
    J. Dundurs: J. Appl. Phys, 1968, vol. 39, pp. 4152-4156.CrossRefGoogle Scholar
  4. 4.
    R. Lagneborg and B. Bergman: Metal Sci., 1976, vol. 10, pp. 20-28.CrossRefGoogle Scholar
  5. 5.
    T. M. Pollock and A. S. Argon: Acta Metall. Mater, 1994, vol. 42, pp. 1859-1874.CrossRefGoogle Scholar
  6. 6.
    M. Ingnat, J. -Y. Buffiere and J. M. Chaix: Acta Metall. Mater., 1993, vol. 41, pp. 852-862.Google Scholar
  7. 7.
    A. Epishin and T. Link: Superalloys, 2004, pp. 137–43Google Scholar
  8. 8.
    G. S. Ansell and J. Weertman: Trans. Metall. Soc. AIME., 1959, vol. 215, pp. 838-843.Google Scholar
  9. 9.
    D. McLean: Metall. Rev., 1962, vol. 7, pp. 481-527.CrossRefGoogle Scholar
  10. 10.
    R. S. W. Shewfelt and L. M. Brown: Philos. Mag., 1977, vol. 35, pp. 945-962.CrossRefGoogle Scholar
  11. 11.
    B. Bay, N. Hansen, D. A. Hughes and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205-219.CrossRefGoogle Scholar
  12. 12.
    D. A. Hughes and N. Hansen: Metal. Trans., 1993, vol. 24A, pp. 2021-2037.Google Scholar
  13. 13.
    K. Morii and Y. Nakayama: Trans. JIM, 1981, vol. 22, pp. 857-864.CrossRefGoogle Scholar
  14. 14.
    W. B. Hutchinson, B. J. Duggan and M. Hatherly: Metals. Tech., 1979, vol. 6, pp. 398-403.CrossRefGoogle Scholar
  15. 15.
    K. Higashida, T. Morikawa: Tetsu-to-Hagané, 2008, vol. 94, pp. 576–581.CrossRefGoogle Scholar
  16. 16.
    R. K. Ham: Philos. Mag., 1961, vol. 6, pp. 1183-1184.CrossRefGoogle Scholar
  17. 17.
    S.C. Stanley and L. Guttman: AIMME Trans. J. Met., 1953, vol. 197, pp. 81–87.Google Scholar
  18. 18.
    J. E. Bailey and P. B. Hirsch: Philos. Mag., 1960, vol. 5, pp. 485-497.CrossRefGoogle Scholar
  19. 19.
    Z. S. Basinski: Dislocation in Solids, The Faraday Society, London, 1964, pp.93.Google Scholar
  20. 20.
    G. K. Williamson and W. H. Hall: Acta Metal., 1953, vol. 1, pp. 22-31.CrossRefGoogle Scholar
  21. 21.
    B. E. Warren and B. L. Averbach: J. Appl. Phys., 1950, vol. 21, pp. 595-599.CrossRefGoogle Scholar
  22. 22.
    T. Ungár, and A. Borbely: Appl. Phys. Lett., 1996, vol. 69, pp. 3173-3175.CrossRefGoogle Scholar
  23. 23.
    G.G. Ribárik: PhD dissertation, Eotvos Lorand University, Budapest, Hungary, 2009.Google Scholar
  24. 24.
    H.P. Klug: X-ray Diffraction Procedure, 2nd ed., wiley, 1902, p. 291.Google Scholar
  25. 25.
    J. Martinez-Garcia, M. Leoni and P. Scardi, Acta Cryst., 2009, vol. A65, pp. 109-119.CrossRefGoogle Scholar
  26. 26.
    M. R. M. Garagh, S .H. Nedjad, H. Shirazi, M .I. Mobarekeh and M. N .Ahmadabadi: Thin Solid Film, 2008, vol. 516, pp. 8117-8124.CrossRefGoogle Scholar
  27. 27.
    T. E. M. Staab, R. Krause-Rehberg and B. Kieback: J. Mater. Sci., 1999, vol. 34, pp. 3833-3851.CrossRefGoogle Scholar
  28. 28.
    28 B. Bay, N. Hansen, D. A. Hughes and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205-219.CrossRefGoogle Scholar
  29. 29.
    D. A. Hughes and N. Hansen: Metall. Trans., 1993, vol. 24A, pp. 2021-2037.Google Scholar
  30. 30.
    A. S. Malin and M. Hatherly: Met. Sci., 1979, vol. 13, pp. 463-472.CrossRefGoogle Scholar
  31. 31.
  32. 32.
    U. F. Kocks and H. Mecking: Progress in Materials Science, 2003, vol. 48, pp. 171–273.CrossRefGoogle Scholar
  33. 33.
    P.R. Swan: Electron Microscopy and Strength of Crystals Interscience, New York, 1963, pp. 131–81.Google Scholar
  34. 34.
    C. Lung: J. Mater. Sci. Technol., 1995, vol. 11, pp. 133.Google Scholar
  35. 35.
    V. Vitek: Philos. Mag., 2004, vol. 84, pp. 415-428.CrossRefGoogle Scholar
  36. 36.
    F.R.N. Nabarro and M.S. Duesbury: Dislocations in Solids, Elsevier, Amsterdam, 1989, pp. 507–87.Google Scholar
  37. 37.
    T. Shintani and Y. Murata: Acta Materialia, 2011, vol. 59, pp. 4314-4322.CrossRefGoogle Scholar
  38. 38.
    E. Schafler, M. Zehetbauer and T. Ungár: Mat. Sci. Eng. A, 2001, vol. 319-321, pp. 220-223.CrossRefGoogle Scholar
  39. 39.
    P. S. Kotval and O. H. Nestor: Trans. Metal. Soc. AIME, 1969, vol. 245, pp. 1275.Google Scholar
  40. 40.
    H. Ohkubo, Z. Tang, Y. Nagai, M .Hasegawa, T. Tawara and M. Kiritani: Mater. Sci. Eng. A, 2003, vol. 350, pp. 95-101.CrossRefGoogle Scholar
  41. 41.
    S. Fujita, T. Okita, E. Kuramoto and N. Sekimura: J. Nucl. Mater., 2009, vol. 386-388, pp. 93-96.CrossRefGoogle Scholar
  42. 42.
    D. Bacon, Y. Osetsky and Z. Rong: Philo. Mag., 2006, vol. 86, pp. 3921-3936.CrossRefGoogle Scholar
  43. 43.
    V. Shastry and T. Diaz de la Rubia., J. Eng. Mater. Technol., 1999, vol. 121, pp. 126-128.Google Scholar
  44. 44.
    H. Heinisch, F. Gao and R. Kurtz: Philo. Mag., 2010, vol. 90, pp. 885-895.CrossRefGoogle Scholar
  45. 45.
    Yu. N. Osetsky and D. J. Bacon: J. Nucl. Mater., 2003, vol. 323, pp. 268-280.CrossRefGoogle Scholar
  46. 46.
    B. D. Wirth, V. V. Bulatov, and T. Diaz de la Rubia: J. Engineer. Mater. Tech., 2002, vol. 124, pp. 329-334.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Technical Research & Development BureauNippon Steel & Sumitomo Metal CorporationAmagasakiJapan
  2. 2.The Oarai Center, Institute for Materials ResearchTohoku UniversityOaraiJapan

Personalised recommendations