Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

Abstract

We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    F. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena. Elsevier, Amsterdam, 2004.

  2. 2.

    V.Y. Gertsman and R. Birringer: Scripta Metall. Mater., 1994, vol. 30, p. 577–81

  3. 3.

    C. Lingk and M.E. Gross: J. Appl. Phys., 1998, vol. 84, p. 5547–53

  4. 4.

    K. Zhang, J. Weertman, and J. Eastman: Appl. Phys. Lett., 2005, vol. 87, p. 061921:1–3

  5. 5.

    A.L. Etter, T. Baudin, and R. Penelle: Scripta Mater., 2002, vol. 47, p. 725–30

  6. 6.

    B. Gunther, A. Kumpmann, and H.-D. Kunze: Scripta Metall. Mater., 1992, vol. 27, p. 833–38

  7. 7.

    F. Ebrahimi, and H. Li: Scripta Mater., 2006, vol. 55, p. 263–66

  8. 8.

    D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1985, vol. 33, p. 2233–47

  9. 9.

    C. Thompson, H. Frost, and F. Spaepen: Acta Metall., 1987, vol. 33, p. 887–90

  10. 10.

    K. Janssens and E. A. Holm: TMS Lett., 2005, vol. 2, p. 3–4

  11. 11.

    Y. Huang and F. J. Humphreys: Acta Mater. 2000, vol 48, p. 2017–30

  12. 12.

    E. A. Holm, M. A. Miodownik, and A.D. Rollett: Acta Mater., 2003, vol. 51, p. 2701–16

  13. 13.

    A. D. Rollett and W. W. Mullins: Scripta Mater., 1997, vol. 36, p. 975–80

  14. 14.

    H. Frost and C. Thompson: J. Electron. Mater., 1988, vol. 17, p. 447–58

  15. 15.

    S.H. Jung, D.Y. Yoon, and S.J.L. Kang: Acta Mater., 2013, vol. 61, ser. 15, pp. 5685–93.

  16. 16.

    C.C.F. Kwan, Z. Li, and Z. Wang: Metall. and Mater. Trans. A, 2015, vol. 46A, ser. 10, pp. 4636–45.

  17. 17.

    A. D. Rollett, D. J. Srolovitz, and M. P. Anderson: Acta Metall., 1989, vol. 37, p. 1227–40

  18. 18.

    K.-J. Ko, A. D. Rollett, and N.-M. Hwang: Acta Mater., 2010, vol. 58, p. 4414–23

  19. 19.

    S.J. Dillon, M. Tang, W. C. Carter, and M. P. Harmer, Acta Mater., 2007, vol. 55, p. 6208–18

  20. 20.

    W. Rheinheimer and M.J. Hoffmann. Scripta Mater, 2015, vol. 101, p. 68-71.

  21. 21.

    D. Olmsted, E. A. Holm, and S. Foiles: Acta Mater., 2009, vol. 57, p. 3704–13

  22. 22.

    V. Randle: Interface Sci., 2002, vol. 10, p. 271–77

  23. 23.

    V. Randle, G. S. Rohrer, H. M. Miller, M. Coleman, and G. T. Owen: Acta Mater., 2008, vol. 56, p. 2363–73

  24. 24.

    G. S. Grest, M. P. Anderson, D. J. Srolovitz, and A. D. Rollett: Scripta Metall., 1990, vol. 24, p. 661–65

  25. 25.

    A. Lawrence, J.M. Rickman, M.P. Harmer, and A.D. Rollett: Acta Mater. 2016, vol. 103, pp. 681-87

  26. 26.

    M. P. Anderson, D. J. Srolovitz, G. S. Grest, and P. Sahni: Acta Metall., 1984, vol. 32, p. 783–91

  27. 27.

    M. P. Anderson, G. S. Grest, and D. J. Srolovitz: Philos. Mag. B, 1989, vol. 59, p. 293–329

  28. 28.

    A.D. Rollett and P. Manohar: Continuum Scale Simulation of Engineering Materials, Wiley, 2006, pp. 77–114.

  29. 29.

    A. B. Bortz, M. H. Kalos, and J. L. Lebowitz: J. Comput. Phys., 1975, vol. 17, p. 10–18

  30. 30.

    S. Plimpton, A. Thompson, and A. Slepoy: SPPARKS Kinetic Monte Carlo Simulator, http://spparks.sandia.gov/index.html.

  31. 31.

    S. Plimpton, C. Battaile, M. Chandross, E. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, and X. Zhou: “Crossing the Mesoscale No-Man’s Land via Parallel Kinetic Monte Carlo,” Sandia Report SAND2009-6226, September 2009.

  32. 32.

    N. Rajmohan and J. A. Szpunar: J. Mater. Sci. Eng. A, 2000, vol. 289, pp. 99-108

  33. 33.

    B. Bollobás and O. Riordan: Probab. Theory Relat. Fields 2006, vol. 136, pp. 417-68

  34. 34.

    W. B. Hutchinson: Mater. Sci. Forum, 2012, vol. 73, pp. 715-16

  35. 35.

    C.S. Park, H.K. Park, H.S. Shim, T.W. Na, C.H. Han, and N.M. Hwang: Philos. Mag. Lett., 2015, vol. 95, ser. 4, pp. 220–28.

  36. 36.

    J. B. Koo, D. Y. Yoon, and M. F. Henry: Metall. Mater. Trans. A, 2000 vol. 31A, p. 1489–91

  37. 37.

    T.A. Bennett, P. N. Kalu, and A.D. Rollett: Scripta Mater., 2007, vol. 57, ser. 1, pp. 41–44.

  38. 38.

    J. K. Mason, E. A. Lazar, R. D. MacPherson, and D. J. Srolovitz: Phys. Rev. E, 2015, vol. 92, p. 063308:1–18

  39. 39.

    D.K. Lee, B.-J. Lee, K.J. Ko, and N.M. Hwang: Mater. Trans., JIM, 2009, vol. 50, pp. 2521–25.

  40. 40.

    E.A. Holm and P.M. Duxbury: Scripta Mater. 2006, vol. 54, p. 1035-40.

Download references

Acknowledgments

This work was performed at Carnegie Mellon University and was supported by the United States National Science Foundation Award DMR-1307138 and by the John and Claire Bertucci Graduate Fellowship Foundation.

Author information

Correspondence to Elizabeth A. Holm.

Additional information

Manuscript submitted January 8, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DeCost, B.L., Holm, E.A. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility. Metall and Mat Trans A 48, 2771–2780 (2017). https://doi.org/10.1007/s11661-016-3673-6

Download citation

Keywords

  • Grain Size Distribution
  • Texture Component
  • Growth Event
  • Abnormal Growth
  • Boundary Mobility