Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 8, pp 3873–3881 | Cite as

Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

  • Hao ChenEmail author
  • Benqiang Zhu
  • Matthias Militzer
Article

Abstract

Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 °C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.

Keywords

Ferrite Austenite Austenite Formation Interface Mobility Stagnant Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Hillert: The growth of ferrite, bainite and martensite. Internal report, Royal Institute of Technology, 1960.Google Scholar
  2. 2.
    Aaronson HI, Enomoto M, Lee JK: Mechanisms of Diffusional Phase Transformations in Metals and Alloys, Taylor & Francis Group, New York, 2010.CrossRefGoogle Scholar
  3. 3.
    Pereloma E, Edmonds D: Phase Transformation in Steels, Woodhead Publishing, Cambridge, 2012.CrossRefGoogle Scholar
  4. 4.
    Purdy G, Ågren J, Borgenstam A, Bréchet Y, Enomoto M, Furuhara T, Gamsjäger E, Gouné M, Hillert M, Hutchinson C, Militzer M, Zurob H: Metall Mater Trans A, 2011, vol 42A, pp. 3703-3718CrossRefGoogle Scholar
  5. 5.
    Gouné M, Danoix F, Ågren J, Bréchet Y, Hutchinson C, Militzer M, Purdy G, van der Zwaag S, Zurob H: Mater. Sci. Eng. R, 2015, vol. 92, pp. 1-38.CrossRefGoogle Scholar
  6. 6.
    M. Hillert: Introduction to paraequilibrium, Internal report, Swedish Institute of Metals Research, Stockholm, 1953.Google Scholar
  7. 7.
    [7] Hultgren A: Trans. ASM., 1947, vol. 39, pp. 915-1005.Google Scholar
  8. 8.
    [8] Zener C: J Appl Phys, 1949, vol. 20, pp. 950-953.CrossRefGoogle Scholar
  9. 9.
    [9] Kirkaldy JS: Can J Phys, 1958, vol.36, pp. 907-916.CrossRefGoogle Scholar
  10. 10.
    [10] Coates DE: Metallurgical Transactions, 1972, vol. 3, pp. 1203-1212.CrossRefGoogle Scholar
  11. 11.
    [11] Purdy GR, Bréchet Y: Acta Metall, 1995, vol. 43, pp. 3763-3774.CrossRefGoogle Scholar
  12. 12.
    [12] Enomoto M: Acta Mater, 1999, vol. 47, pp. 3533-3540.CrossRefGoogle Scholar
  13. 13.
    [13] Odqvist J, Hillert M, Ågren J: Acta Mater, 2002, vol. 50, pp. 3211-3225.CrossRefGoogle Scholar
  14. 14.
    [14] Zurob H, Panahi D, Hutchinson C, Bréchet Y, Purdy G: Metall. Mater. Trans. A, 2013, vol. 44, pp.3456-3471.CrossRefGoogle Scholar
  15. 15.
    [15] Chen H, Borgenstam A, Odqvist J, Zuazo I, Ågren J, van der Zwaag S: Acta Mater, 2013, vol. 61, pp 4512-4523.CrossRefGoogle Scholar
  16. 16.
    [16] Chen H, van der Zwaag S: Acta Mater, 2014, vol.72, pp. 1-12.CrossRefGoogle Scholar
  17. 17.
    [17] Cahn JW: Acta Metall, 1962, vol.10, pp. 789-798.CrossRefGoogle Scholar
  18. 18.
    [18] Hillert M, Sundman B: Acta Metall, 1976, vol. 24, pp. 731-743.CrossRefGoogle Scholar
  19. 19.
    [19] Hillert M, Odqvist J, Ågren J: Scr Mater, 2001, vol. 45, pp.221-227.CrossRefGoogle Scholar
  20. 20.
    [20] Hillert M: Acta Mater, 2004, vol. 52, pp. 5289-5293.CrossRefGoogle Scholar
  21. 21.
    [21] Oi K, Lux C, Purdy GR: Acta Mater, 2000, vol.48, pp. 2147-2155.CrossRefGoogle Scholar
  22. 22.
    [22] Li ZD, Yang ZG, Zhang C, Liu ZQ: Mater Sci Eng A, 2010, vol. 527, pp.4406-4411.CrossRefGoogle Scholar
  23. 23.
    [23] Chen H, Xu W, Mohamed G, van der Zwaag S: Phil Mag lett, 2012, vol. 92, pp. 547-555.CrossRefGoogle Scholar
  24. 24.
    [24] Liu ZQ, Miyamoto G, Yang ZG, Furuhara T: Acta Mater, 2013, vol. 61, pp. 3120-3129.CrossRefGoogle Scholar
  25. 25.
    [25] Beche A, Zurob HS, Hutchinson CR: Mater Trans A, 2007, vol. 38A, pp. 2950-2955.CrossRefGoogle Scholar
  26. 26.
    [26] Zurob HS, Hutchinson CR, Beche A, Purdy GR, Bréchet Y: Acta Mater, 2008, vol. 56, pp.2203-2211.CrossRefGoogle Scholar
  27. 27.
    [27] Zurob HS, Hutchinson CR, Bréchet Y, Seyedrezai H, Purdy GR: Acta Mater, 2009, vol. 57, pp.2781–2792.CrossRefGoogle Scholar
  28. 28.
    [28] Hutchinson CR, Fuchsmann A, Zurob HS, Bréchet Y: Scripta Mater, 2004, vol. 50, pp. 285-289.CrossRefGoogle Scholar
  29. 29.
    [29] Chen H, van der Zwaag S: Comp Mater Sci, 2010, vol. 49, pp.801-813.CrossRefGoogle Scholar
  30. 30.
    30. Chen H, Gouné M, van der Zwaag S: Compd. Mater. Sci. 2012, vol. 55, pp. 34-43.CrossRefGoogle Scholar
  31. 31.
    [31] Chen H, Kuziak R, van der Zwaag S: Metall Mater Trans A, 2013, vol. 44, pp.5617-5621.CrossRefGoogle Scholar
  32. 32.
    [32] Chen H, van der Zwaag S: Acta Mater, 2013, vol. 61, pp.1338-1349.CrossRefGoogle Scholar
  33. 33.
    [33] Chen H, Gamsjäger E, Schider S, van der Zwaag S: Acta Mater, 2013, vol. 61, pp. 2414-2424.CrossRefGoogle Scholar
  34. 34.
    [34] Chen H, Appolaire B, van der Zwaag S: Acta Mater, 2011, vol. 59, pp. 6751-6760.CrossRefGoogle Scholar
  35. 35.
    [35] Gamsjäger E, Chen H, van der Zwaag S: Comp Mater Sci, 2014, vol. 83, pp. 92-100.CrossRefGoogle Scholar
  36. 36.
    [36] Huang CJ, Browne DJ, McFadden S: Acta Mater, 2006, vol. 54, pp.11-21.CrossRefGoogle Scholar
  37. 37.
    [37] Mecozzi MG, Sietsma J, van Der Zwaag S, Apel M, Schaffnit P, Steinbach I: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2327-2340.CrossRefGoogle Scholar
  38. 38.
    [38] Mecozzi MG, Militzer M, Sietsma J, van der Zwaag S: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1237-1247.CrossRefGoogle Scholar
  39. 39.
    [39] Mecozzi MG, Sietsma J, van der Zwaag S: Acta Mater, 2006, vol. 54, pp. 1431-1440.CrossRefGoogle Scholar
  40. 40.
    [40] Militzer M: Current opinion in solid state and materials science, 2011, vol. 15, pp.106-115.CrossRefGoogle Scholar
  41. 41.
    [41] Militzer M, Mecozzi MG, Sietsma J, van der Zwaag S: Acta Mater, 2006, vol. 54, pp.3961-3972.CrossRefGoogle Scholar
  42. 42.
    [42] Steinbach I, Pezzolla F: Phys. Nonlinear Phenom, 1999, vol.134, pp.385-393.CrossRefGoogle Scholar
  43. 43.
    [43] Eiken J, Böttger B, Steinbach I: Phys. Rev. E, 2006, vol. 73, pp. 6.CrossRefGoogle Scholar
  44. 44.
    [44] Mecozzi M, Eiken J, Apel M, Sietsma J: Compt Mater Sci, 2011, vol. 50, pp. 1846-1853.CrossRefGoogle Scholar
  45. 45.
    [45] Sietsma J, van der Zwaag S: Acta Mater, 2004, vol. 52, pp. 4143-4152.CrossRefGoogle Scholar
  46. 46.
    [46] Chen H, van der Zwaag S: J Mater Sci, 2011, vol. 46, pp. 1328-1336.CrossRefGoogle Scholar
  47. 47.
    [47] Liu Z, Yang ZG, Li Z, Liu Z, Zhang C: Acta Metal Sinica, 2010, vol. 46, pp. 390-395.CrossRefGoogle Scholar
  48. 48.
    [48] Chen H, Liu YC, Yan ZS, Li YL, Zhang LF: Applied Physics A, 2010, vol. 98, pp. 211-217.CrossRefGoogle Scholar
  49. 49.
    [49] Zhu B, Chen H, Militzer M: Compt Mater Sci, 2015, vol. 108, pp. 333-341.CrossRefGoogle Scholar
  50. 50.
    [50] Krielaart GP, Sietsma J, van der Zwaag S: Mater Sci Eng A, 1997, vol. 237, pp. 216-223.CrossRefGoogle Scholar
  51. 51.
    [51] Zhu B, Militzer M: Modelling Simul. Mater Sci Eng, 2012, vol. 20, pp. 085011.CrossRefGoogle Scholar
  52. 52.
    [52] Zhu B, Militzer M: Mat. Met. Trans A, 2015, vol. 46, pp. 1073-1084.CrossRefGoogle Scholar
  53. 53.
    MICRESS, Software developed in ACCESS is an independent research center associated with the Technical University of Aachen.Google Scholar
  54. 54.
    [54] Chen H, Zhu K, Zhao L, van der Zwaag S: Acta Mater, 2013, vol. 61, pp. 5458-5468.CrossRefGoogle Scholar
  55. 55.
    [55] Jin H, Elfimov I, Militzer M: J App Phys, 2014, vol. 115, pp. 093506.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials of Ministry of Education, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Centre for Metallurgical Process EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations