Metallurgical and Materials Transactions A

, Volume 47, Issue 8, pp 3860–3872 | Cite as

Multicomponent High-Strength Low-Alloy Steel Precipitation-Strengthened by Sub-nanometric Cu Precipitates and M2C Carbides

  • Divya JainEmail author
  • Dieter Isheim
  • Allen H. Hunter
  • David N. Seidman


HSLA-115 is a novel high-strength low-alloy structural steel derived from martensitic Cu-bearing HSLA-100. HSLA-100 is typically used in conditions with overaged Cu precipitates, to obtain acceptable impact toughness and ductility. Present work on HSLA-115 demonstrates that incorporating sub-nanometric-sized M2C carbides along with Cu precipitates produces higher strength steels that still meet impact toughness and ductility requirements. Isothermal aging at 823 K (550 °C) precipitates M2C carbides co-located with the Cu precipitates and distributed heterogeneously at lath boundaries and dislocations. 3D atom-probe tomography is used to characterize the evolution of these precipitates at 823 K (550 °C) in terms of mean radii, number densities, and volume fractions. These results are correlated with microhardness, impact toughness, and tensile strength. The optimum combination of mechanical properties, 972 MPa yield strength, 24.8 pct elongation to failure, and 188.0 J impact toughness at 255 K (−18 °C), is attained after 3-hour aging at 823 K (550 °C). Strengthening by M2C precipitates offsets the softening due to overaging of Cu precipitates and tempering of martensitic matrix. It is shown that this extended yield strength plateau can be used as a design principle to optimize strength and toughness at the same time.


Cementite Aging Time Impact Toughness Lath Boundary Isoconcentration Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support for this research by the Office of Naval Research through Grant Number N00014-12-1-0475 and useful discussions with the Program Manager, Dr. William Mullins, of the Office of Naval Research. LEAP measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomograph at NUCAPT was purchased and upgraded with funding from Grants NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781). Instrumentation at NUCAPT was supported by the Initiative for Sustainability and Energy at Northwestern University. This research made use of Northwestern’s NUANCE-EPIC and OMM facilities. NUCAPT, EPIC, and OMM received support from the MRSEC program (NSF DMR-1121262) through Northwestern’s Materials Research Center. EPIC received support from the International Institute for Nanotechnology (IIN) and the State of Illinois, through the IIN.


  1. 1.
    A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson and G. Krauss: in Microalloyed HSLA Steels, ASM International, Metals Park, OH, 1988, pp. 259-275.Google Scholar
  2. 2.
    E.J. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Mntemarano and J.P. Gudas: Naval Engineers Journal, 1990, vol. 102, pp. 63-82.CrossRefGoogle Scholar
  3. 3.
    B.A. Graville: in Welding of HSLA(Microalloyed) Structural Steels, ASM International, Metals Park, OH, 1976, pp. 85-101.Google Scholar
  4. 4.
    T. L. Anderson, J. A. Hyatt and J. C. West: Welding Journal, 1987, vol. 66, pp. 21-26.Google Scholar
  5. 5.
    R.P. Foley and M.E. Fine: International Conference on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, Warrendale, PA, 1991, pp. 315–330.Google Scholar
  6. 6.
    E. Hornbogen: Trans. ASM, 1964, vol. 57, pp. 120-132.Google Scholar
  7. 7.
    C.S. Smith and E.W. Palmer: Trans. AIME, 1933, vol. 104, pp. 133-168.Google Scholar
  8. 8.
    L.J. Cuddy and J.C. Raley: Metall. Trans. A, 1983, vol. 14A, pp. 1989-1995.CrossRefGoogle Scholar
  9. 9.
    T. Gladman: Proc. Roy. Soc. A, 1966, vol. 294, pp. 298-309.CrossRefGoogle Scholar
  10. 10.
    T.W. Montemarano, B.P. Sack and J.P. Gudas: Journal of Ship Production, 1986, vol. 2, pp. 145-162.Google Scholar
  11. 11.
    P.J. Konkol, K.M. Stefanick and G.S. Pike: Welding journal, 2011, vol. 90, pp. 34-41.Google Scholar
  12. 12.
    J.D. Farren, A.H. Hunter, J.N. Dupont, D.N. Seidman, C.V. Robino and E. Kozeschnik: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4155-4170.CrossRefGoogle Scholar
  13. 13.
    M.E. Fine, S. Vaynman, D. Isheim, Y.W. Chung, S.P. Bhat and C.H. Hahin: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3318-3325.CrossRefGoogle Scholar
  14. 14.
    M.S. Gagliano and M.E. Fine: Calphad, 2001, vol. 25, pp. 207-216.CrossRefGoogle Scholar
  15. 15.
    M.S. Gagliano and M.E. Fine: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2323-2329.CrossRefGoogle Scholar
  16. 16.
    A.H. Hunter, J.D. Farren, J.N. DuPont and D.N. Seidman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1741-1759.CrossRefGoogle Scholar
  17. 17.
    D. Isheim, M.S. Gagliano, M.E. Fine and D.N. Seidman: Acta Mater., 2006, vol. 54, pp. 841-849.CrossRefGoogle Scholar
  18. 18.
    D. Isheim, R.P. Kolli, M.E. Fine and D.N. Seidman: Scripta Mater., 2006, vol. 55, pp. 35-40.CrossRefGoogle Scholar
  19. 19.
    R.P. Kolli, Z. Mao, D.N. Seidman and D.T. Keane: Appl. Phys. Lett., 2007, vol. 91, p. 241903.CrossRefGoogle Scholar
  20. 20.
    R.P. Kolli and D.N. Seidman: Acta Mater., 2008, vol. 56, pp. 2073-2088.CrossRefGoogle Scholar
  21. 21.
    R.P. Kolli, R.M. Wojes, S. Zaucha and D.N. Seidman: Int. J. Mater. Res., 2008, vol. 99, pp. 513-527.CrossRefGoogle Scholar
  22. 22.
    S. Vaynman, M.E. Fine, S. Lee and H.D. Espinosa: Scripta Mater., 2006, vol. 55, pp. 351-354.CrossRefGoogle Scholar
  23. 23.
    S. Vaynman, D. Isheim, R. P. Kolli, S.P. Bhat, D.N. Seidman and M.E. Fine: Metall. Mater. Trans. A, 2008, vol. 39, pp. 363-373.CrossRefGoogle Scholar
  24. 24.
    J.T. Bono, J.N. DuPont, D. Jain, S.I. Baik and D.N. Seidman: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5158-5170.CrossRefGoogle Scholar
  25. 25.
    R.P. Kolli and D.N. Seidman: Microsc. Microanal., 2007, vol. 13, pp. 272-284.CrossRefGoogle Scholar
  26. 26.
    G.R. Speich, G.B. Olson, M. Azrin and E.S. Wright: in Innovations in Ultrahigh Strength Steel Technology, Proceedings 34th Sagamore Army Materials Research Conference, G.B. Olson, M. Azrin, and E.S. Wright, eds., US Army Materials Technology Laboratory, Watertown, MA, 1990, pp. 89–110.Google Scholar
  27. 27.
    G.R. Speich, D.S. Dabkowski and L.F. Porter: Metall. Trans., 1973, vol. 4, pp. 303-315.CrossRefGoogle Scholar
  28. 28.
    G. Ghosh and G.B. Olson: Acta Mater., 2002, vol. 50, pp. 2099-2119.CrossRefGoogle Scholar
  29. 29.
    S.K. Dhua, D. Mukerjee and D.S. Sarma: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2259-2270.CrossRefGoogle Scholar
  30. 30.
    A. Saha and G.B. Olson: J. Computer-Aided Mater. Des., 2007, vol. 14, pp. 177-200.CrossRefGoogle Scholar
  31. 31.
    M.D. Mulholland and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 1881-1897.CrossRefGoogle Scholar
  32. 32.
    B. Gault, M.P. Moody, J.M. Cairney and S.P. Ringer: Atom Probe Microscopy, Springer, NewYork, NY, 2012.CrossRefGoogle Scholar
  33. 33.
    T.F. Kelly and M.K. Miller: Rev. Sci. Instrum., 2007, vol. 78, p. 031101.CrossRefGoogle Scholar
  34. 34.
    M.K. Miller: Atom probe tomography-Analysis at the atomic level, Kluwer Academic/Plenum Publishers, New York, NY, 2000.CrossRefGoogle Scholar
  35. 35.
    D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 127-158.CrossRefGoogle Scholar
  36. 36.
    A.H. Hunter: PhD Thesis, Northwestern University, Evanston, IL, 2012.Google Scholar
  37. 37.
    J.M. Hyde: PhD Thesis, University of Oxford, Oxford, UK, 1993.Google Scholar
  38. 38.
    M.K. Miller: MRS Proceedings, 1999, vol. 580, pp. 35-40.CrossRefGoogle Scholar
  39. 39.
    M.K. Miller and E.A. Kenik: Microsc. Microanal., 2004, vol. 10, pp. 336-341.CrossRefGoogle Scholar
  40. 40.
    D. Vaumousse, A. Cerezo and P.J. Warren: Ultramicroscopy, 2003, vol. 95, pp. 215-221.CrossRefGoogle Scholar
  41. 41.
    F. Vurpillot, A. Bostel and D. Blavette: Appl. Phys. Lett., 2000, vol. 76, pp. 3127-3129.CrossRefGoogle Scholar
  42. 42.
    M.D. Mulholland and D.N. Seidman: Microsc. Microanal., 2011, vol. 17, pp. 950-962.CrossRefGoogle Scholar
  43. 43.
    T.T. Tsong: Surf Sci., 1978, vol. 70, pp. 211-233.CrossRefGoogle Scholar
  44. 44.
    . S.W. Thompson: Mater. Charact., 2013, vol. 77, pp. 89-98.CrossRefGoogle Scholar
  45. 45.
    R. Varughese and P.R. Howell: Mater. Charact., 1993, vol. 30, pp. 261-267.CrossRefGoogle Scholar
  46. 46.
    M. Mujahid, A.K. Lis, C.I. Garcia and A.J. DeArdo: J. Mater. Eng. Perform., 1998, vol. 7, pp. 247-257.CrossRefGoogle Scholar
  47. 47.
    T. Inoue, S. Matsuda, Y. Okamura and K. Aoki: Trans. JIM, 1970, vol. 11, pp. 36-43.Google Scholar
  48. 48.
    S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-1799.CrossRefGoogle Scholar
  49. 49.
    C. Wang, M. Wang, J. Shi, W. Hui and H. Dong: Scripta Mater., 2008, vol. 58, pp. 492-495.CrossRefGoogle Scholar
  50. 50.
    J.P. Naylor: Metall. Trans. A, 1979, vol. 10, pp. 861-873.CrossRefGoogle Scholar
  51. 51.
    A.N. Bhagat, S.K. Pabi, S. Ranganathan and O.N. Mohanty: ISIJ Int., 2004, vol. 44, pp. 115-122.CrossRefGoogle Scholar
  52. 52.
    Naval Sea Systems Command, US Navy: NAVSEA Technical Publication T9074-BD-GIB-010/0300, 2002, p. 22.Google Scholar
  53. 53.
    R.A. Farrar and P.L. Harrison: J. Mater. Sci., 1987, vol. 22, pp. 3812-3820.CrossRefGoogle Scholar
  54. 54.
    D.J. Abson and R.J. Pargeter: Int. Met. Rev., 1986, vol. 31, pp. 141-196.CrossRefGoogle Scholar
  55. 55.
    O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437-444.Google Scholar
  56. 56.
    J. Akré, F. Danoix, H. Leitner and P. Auger: Ultramicroscopy, 2009, vol. 109, pp. 518-523.CrossRefGoogle Scholar
  57. 57.
    D.J. Dyson, S.R. Keown, D. Raynor and J.A. Whiteman: Acta Metall., 1966, vol. 14, pp. 867-875.CrossRefGoogle Scholar
  58. 58.
    J.A. Liddle, G.D.W. Smith and G.B. Olson: J. Phys., 1986, vol. 47, pp. C7-223-C7-231.Google Scholar
  59. 59.
    D. Raynor, J.A. Whiteman and R.W.K. Honeycombe: J. Iron Steel Inst., 1966, vol. 204, pp. 1114-1116.Google Scholar
  60. 60.
    K. Stiller, L.E. Svensson, P.R. Howell, W. Rong, H.O. Andren and G.L. Dunlop: Acta Metall., 1984, vol. 32, pp. 1457-1467.CrossRefGoogle Scholar
  61. 61.
    G.M. Carinci, M.G. Hetherington and G.B. Olson: J. Phys., 1988, vol. 49, pp. C6-311-C6-316.Google Scholar
  62. 62.
    I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.CrossRefGoogle Scholar
  63. 63.
    C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581-591.Google Scholar
  64. 64.
    A. Umantsev and G.B. Olson: Scripta Metall. Mater., 1993, vol. 29, pp. 1135-1140.CrossRefGoogle Scholar
  65. 65.
    P.J. Othen, M.L. Jenkins and G.D.W. Smith: Philos. Mag. A, 1994, vol. 70, pp. 1-24.CrossRefGoogle Scholar
  66. 66.
    P.J. Othen, M.L. Jenkins, G.D.W. Smith and W.J. Phythian: Philos. Mag. Lett., 1991, vol. 64, pp. 383-391.CrossRefGoogle Scholar
  67. 67.
    J. Weertman: J. Appl. Phys., 1958, vol. 29, pp. 1685-1689.CrossRefGoogle Scholar
  68. 68.
    M.E. Fine, A. Tongen, and M.S. Gagliano: in Electron Microscopy: Its Role in Materials Science, J.R. Weertman, M.E. Fine, K. Faber, W. King, and P. Liaw, eds., The Mike Meshii Symposium, TMS, Warrendale, PA, 2003, pp. 229–34.Google Scholar
  69. 69.
    S. K. Das, S. Sivaprasad, S. Das, S. Chatterjee and S. Tarafder: Mater. Sci. Eng. A, 2006, vol. 431, pp. 68-79.CrossRefGoogle Scholar
  70. 70.
    L. Skoufari-Themistou, D.N. Crowther and B. Mintz: Mater. Sci. Technol., 1999, vol. 15, pp. 1069-1079.CrossRefGoogle Scholar
  71. 71.
    G. Spanos, R.W. Fonda, R.A. Vandermeer and A. Matuszeski: Metall. Mater. Trans. A, 1995, vol. 26, pp. 3277-3293.CrossRefGoogle Scholar
  72. 72.
    B.L. Tiemens, A.K. Sachdev, R.K. Mishra and G.B. Olson: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3626-3635.CrossRefGoogle Scholar
  73. 73.
    B.L. Tiemens, A.K. Sachdev and G.B. Olson: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3615-3625.CrossRefGoogle Scholar
  74. 74.
    K. Stiller, M. Hättestrand and F. Danoix: Acta Mater., 1998, vol. 46, pp. 6063-6073.CrossRefGoogle Scholar
  75. 75.
    B.S. Ku and J. Yu: Scripta Mater., 2001, vol. 45, pp. 205-211.CrossRefGoogle Scholar
  76. 76.
    J.S. Montgomery and G.B. Olson: in Innovations in Ultrahigh Strength Steel Technology, G.B. Olson, M. Azrin, and E.S. Wright, eds., Proceedings of 34th Sagamore Army Materials Research Conference, US Army Materials Technology Laboratory, Watertown, MA, 1990, pp. 147–78.Google Scholar
  77. 77.
    G.C. Hwang, S. Lee, J.Y. Yoo and W.Y. Choo: Mater. Sci. Eng. A, 1998, vol. 252, pp. 256-268.CrossRefGoogle Scholar
  78. 78.
    E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, Ch 13, 7th edn, Butterworth-Heinemann Ltd., Oxford, 1992.Google Scholar
  79. 79.
    J.B. Yang, M. Enomoto and C. Zhang: Mater. Sci. Eng. A, 2006, vol. 422, pp. 232-240.CrossRefGoogle Scholar
  80. 80.
    N. Maruyama, M. Sugiyama, T. Hara and H. Tamehiro: Mater. Trans. JIM, 1999, vol. 40, pp. 268-277.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Divya Jain
    • 1
    Email author
  • Dieter Isheim
    • 1
    • 2
  • Allen H. Hunter
    • 1
    • 3
  • David N. Seidman
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Northwestern University Center for Atom-Probe Tomography (NUCAPT)EvanstonUSA
  3. 3.FEI Co.HillsboroUSA

Personalised recommendations