Metallurgical and Materials Transactions A

, Volume 47, Issue 8, pp 4287–4300 | Cite as

Solute-Derived Thermal Stabilization of Nano-sized Grains in Melt-Spun Aluminum

  • A. H. BakerEmail author
  • P. G. Sanders
  • E. A. Lass
  • Deepak Kapoor
  • S. L. Kampe


Thermal stabilization of nanograined metallic microstructures (or nanostructures) can be difficult due to the large driving force for growth that arises from the inherently significant boundary area. Kinetic approaches for stabilization of the nanostructure effective at low homologous temperatures often fail at higher homologous temperatures. Alternatively, thermodynamic approaches for thermal stabilization may offer higher temperature stability. In this research, modest alloying of aluminum with solute (1 pct by mole Sc, Yb, or Sr) was examined as a means to thermodynamically stabilize a bulk nanostructure at elevated temperatures. Following 1-hour annealing treatments at 673 K (400 °C) (0.72 Tm), 773 K (500 °C) (0.83 Tm), and 873 K (600 °C) (0.94 Tm), the alloys remain nanocrystalline (<100 nm) as measured by Warren–Averbach Fourier analysis of X-ray diffraction peaks and direct observation of TEM dark-field micrographs, with the efficacy of stabilization: Sr ≈ Yb > Sc. The disappearance of intermetallic phases in the Sr- and Yb-containing alloys in the X-ray diffraction spectra is observed to occur coincident with the stabilization after annealing, suggesting that precipitates dissolve and the boundaries are enriched with solute.


Annealing Treatment Boundary Energy Column Length Al3Sc Solute Segregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Paul Fraley (Michigan Technological University Particulates Processing Laboratory) for his assistance in melt-spinning sample preparation, Ed Laitila (Michigan Technological University Applied Chemical and Morphological Analysis Laboratory) for his assistance in X-ray diffraction analysis, and Owen Mills (Applied Chemical and Morphological Analysis Laboratory) for his assistance in TEM sample preparation.

The following copyright wording should be placed in the block with the author affiliations: E.A. Lass is employed by National Institute of Standards and Technology. U.S. Government work is not protected by U.S. Copyright.


  1. 1.
    C. Koch: J. Mater. Sci., 2007, vol. 42, pp. 1403–1414.CrossRefGoogle Scholar
  2. 2.
    P.V. Liddicoat, X.-Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, and S.P. Ringer: Nat. Commun., 2010, vol. 1, p. 63.CrossRefGoogle Scholar
  3. 3.
    K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K. Aust: Scr. Metal. Mater.,1991, vol. 25, pp. 2711–2716.CrossRefGoogle Scholar
  4. 4.
    R. Averback, H. Höfler, and R. Tao, Mater. Sci. Eng. A, 1993, vol. 166, pp. 169–177.CrossRefGoogle Scholar
  5. 5.
    Z. Gao, and B. Fultz, Nanostruct. Mater., 1994, vol. 4, pp. 939–47.CrossRefGoogle Scholar
  6. 6.
    A. Michels, C. Krill, H. Ehrhardt, R. Birringer, and D. Wu, Acta Mater., 1999, vol. 47, pp. 2143–2152.CrossRefGoogle Scholar
  7. 7.
    P.C. Millett, R.P. Selvam, and A. Saxena, Acta Mater., 2007, vol. 55, pp. 2329–2336.CrossRefGoogle Scholar
  8. 8.
    Darling, K., B. VanLeeuwen, C. Koch and R. Scattergood, Mater. Sci. Eng., 2010, vol. 527, pp. 3572–80.CrossRefGoogle Scholar
  9. 9.
    K. Darling, B. VanLeeuwen, J. Semones, C. Koch, R. Scattergood, L. Kecskes, and S. Mathaudhu, Mater. Sci. Eng. A 2011, vol. 528, pp. 4365–71.CrossRefGoogle Scholar
  10. 10.
    T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science, 2012, vol. 337, pp. 951–54.CrossRefGoogle Scholar
  11. 11.
    P. Knauth, A. Charai, and P. Gas, Scr. Metall. Mater., 1993, vol. 28, pp. 325–30.CrossRefGoogle Scholar
  12. 12.
    P. Wynblatt, and D. Chatain, Metall and Mat Trans A 2006, vol. 37, pp. 2595-2620.CrossRefGoogle Scholar
  13. 13.
    J. Weissrmiller, J. Mater. Res., 1994, vol. 9.Google Scholar
  14. 14.
    Kirchheim, R., Acta materialia 2002, vol. 50, pp. 413-419.CrossRefGoogle Scholar
  15. 15.
    Liu, F. and R. Kirchheim, Journal of crystal growth 2004, vol. 264, pp. 385-391.CrossRefGoogle Scholar
  16. 16.
    Liu, F. and R. Kirchheim, Scripta materialia 2004, vol. 51, pp. 521-25.CrossRefGoogle Scholar
  17. 17.
    A. Sutton, and R. Balluffi, Interfaces in Crystalline Solids, Clarendon: Oxford 1995Google Scholar
  18. 18.
    Saber, M., H. Kotan, C. C. Koch and R. O. Scattergood, Journal of Applied Physics 2013, vol. 113, pp. 063515-063515-10.CrossRefGoogle Scholar
  19. 19.
    Friedel, J., Advances in Physics 1954, vol. 3, pp. 446-507.CrossRefGoogle Scholar
  20. 20.
    Jones, H., Reports on Progress in Physics 1973, vol. 36, p. 1425.CrossRefGoogle Scholar
  21. 21.
    Zhou, F., J. Lee and E. Lavernia, Scripta materialia 2001, vol. 44, pp. 2013-2017.CrossRefGoogle Scholar
  22. 22.
    Abdoli, H., M. Ghanbari and S. Baghshahi, Materials Science and Engineering: A 2011, vol. 528, pp. 6702-6707.CrossRefGoogle Scholar
  23. 23.
    Fecht, H.-J., Nanostructured Materials 1995, vol. 6, pp. 33-42.CrossRefGoogle Scholar
  24. 24.
    Liu, W. J., C. Sun, P. X. Zhao and S. F. Wang, Advanced Materials Research 2012, vol. 550, pp. 71-74.Google Scholar
  25. 25.
    Halder, N. and C. Wagner, Adv. X-ray Anal 1966, vol. 9, pp. 91-102.Google Scholar
  26. 26.
    Halder, N. and C. Wagner, Acta Crystallographica 1966, vol. 20, pp. 312-313.CrossRefGoogle Scholar
  27. 27.
    Warren, B. and B. Averbach, Journal of Applied Physics 1952, vol. 23, pp. 497-497.CrossRefGoogle Scholar
  28. 28.
    B. Warren, and X.-R. Diffraction, New York, 1990, p. 251.Google Scholar
  29. 29.
    Chen, M., E. Ma, K. J. Hemker, H. Sheng, Y. Wang and X. Cheng, Science 2003, vol. 300, pp. 1275-1277.CrossRefGoogle Scholar
  30. 30.
    Kril, C. and R. Birringer, Philosophical Magazine A 1998, vol. 77, pp. 621-640.CrossRefGoogle Scholar
  31. 31.
    Abràmoff, M. D., P. J. Magalhães and S. J. Ram, Biophotonics international 2004, vol. 11, pp. 36-43.Google Scholar
  32. 32.
    Wagner, C. N., E. Yang and M. S. Boldrick, Journal of non-crystalline solids 1995, vol. 192, pp. 574-577.CrossRefGoogle Scholar
  33. 33.
    Gibbons, J. D., Gibbons nonparametric methods for quantitative analysis, Holt, Rinehart and Winston: New York, 1976.Google Scholar
  34. 34.
    Smith, N. A., N. Sekido, J. H. Perepezko, A. B. Ellis and W. C. Crone, Scripta materialia 2004, vol. 51, pp. 423-426.CrossRefGoogle Scholar
  35. 35.
    Zhong, Y., C. Wolverton, Y. Austin Chang and Z.-K. Liu, Acta materialia 2004, vol. 52, pp. 2739-2754.CrossRefGoogle Scholar
  36. 36.
    Weissmüller, J. and C. Lemier, Physical review letters 1999, vol. 82, p. 213.CrossRefGoogle Scholar
  37. 37.
    Balluffi, R. W., S. Allen and W. C. Carter: Kinetics of Materials. John Wiley & Sons, Hoboken, 2005.CrossRefGoogle Scholar
  38. 38.
    Zhang, Z., X. Bian, Y. Wang and X. Liu, J Mater Sci 2002, vol. 37, pp. 4473-4480.CrossRefGoogle Scholar
  39. 39.
    Moriarty, J. A. and M. Widom, Physical Review B 1997, vol. 56, p. 7905.CrossRefGoogle Scholar
  40. 40.
    F. De Boer, R. Boom, W. Mattens, A. Miedema, and A. Niessen: Cohesion in Metals: Transition Metal Alloys: Cohesion and Structure. (North-Holland, Amsterdam, 1989).Google Scholar
  41. 41.
    Inoue, A., T. Zhang, K. Kita and T. Masumoto, JIM Mater. Trans. 1989, vol. 30, pp. 870-877.CrossRefGoogle Scholar
  42. 42.
    Gale, W. F. and T. C. Totemeier: Smithells metals reference book. Butterworth-Heinemann, Oxford, 2003.Google Scholar
  43. 43.
    Lide, D. R.: CRC handbook of chemistry and physics. CRC press, Boca Raton, 2004.Google Scholar
  44. 44.
    Shubin, A.B. and Yu Shunyaev, K, Russ. Metall., 2011, vol. 2011, pp. 109-13. DOI: 10.1134/S003602951102011X CrossRefGoogle Scholar
  45. 45.
    Chang, Y., Gao, K., Wen, S., Huang, H., Wang, W., Zhu, Z., Nie, Z., and Zhou, D, J. Alloy Compd., 2014, vol. 590, pp. 26-534.CrossRefGoogle Scholar
  46. 46.
    D. Porter and K. Easterling: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 1992.CrossRefGoogle Scholar
  47. 47.
    G. Borzone, A.M. Cardinale, N. Pariodi, and G. Cacciamani, Journal of Alloys and Compounds, 1997, vol. 247, pp. 141-147.CrossRefGoogle Scholar
  48. 48.
    P. Villars and K. Cenzual, Pearson’s crystal data—crystal structure database for inorganic compounds, release 2012/13 Materials Park, Ohio, USA, ASM International.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International (outside the USA) 2016

Authors and Affiliations

  • A. H. Baker
    • 1
    • 4
    Email author
  • P. G. Sanders
    • 1
  • E. A. Lass
    • 2
  • Deepak Kapoor
    • 3
  • S. L. Kampe
    • 1
  1. 1.Department of Materials Science & EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Materials Science & Engineering DivisionNISTGaithersburgUSA
  3. 3.ARDEC, Picatinny ArsenalWhartonUSA
  4. 4.The Boeing CompanySt. LouisUSA

Personalised recommendations