Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 7, pp 3664–3676 | Cite as

Surface Integrity and Structural Stability of Broached Inconel 718 at High Temperatures

  • Z. ChenEmail author
  • R. Lin Peng
  • J. Moverare
  • P. Avdovic
  • J. M. Zhou
  • S. Johansson
Article

Abstract

The current study focused on the surface integrity issues associated with broaching of Inconel 718 and the structural stability of the broached specimen at high temperatures, mainly involving the microstructural changes and residual stress relaxation. The broaching operation was performed using similar cutting conditions as that used in turbo machinery industries for machining fir-tree root fixings on turbine disks. Thermal exposure was conducted at 723 K, 823 K, and 923 K (450 °C, 550 °C, and 650 °C) for 30, 300, and 3000 hours, respectively. Surface cavities and debris dragging, sub-surface cracks, high intensity of plastic deformation, as well as the generation of tensile residual stresses were identified to be the main issues in surface integrity for the broached Inconel 718. When a subsequent heating was applied, surface recrystallization and α-Cr precipitation occurred beneath the broached surface depending on the applied temperature and exposure time. The plastic deformation induced by the broaching is responsible for these microstructural changes. The surface tension was completely relaxed in a short time at the temperature where surface recrystallization occurred. The tensile layer on the sub-surface, however, exhibited a much higher resistance to the stress relief annealing. Oxidation is inevitable at high temperatures. The study found that the surface recrystallization could promote the local Cr diffusion on the broached surface.

Keywords

Residual Stress Oxide Scale Compressive Residual Stress Surface Integrity White Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Ms. Annethe Billenius from Linköping University, for the help with the laboratory work, Agora Materiae, Faculty Grant SFO-MAT-LiU#2009-00971 at Linköping University, Siemens Industrial Turbomachinery AB for their valuable supports.

References

  1. 1.
    D.F. Paulonis, J.M. Oblak, and D.S. Duvall: Trans. Quart. ASM, 1969, vol. 62, pp. 611-622.Google Scholar
  2. 2.
    J.W. Brooks and P.J. Bridges: Superalloys, pp. 33-42, TMS, Warrendale, 1988.Google Scholar
  3. 3.
    A. Oradei-Basile and J. F. Radavich: Superalloys 718, 625 and Various Derivatives, pp. 325-335, TMS, Warrendale, 1991.CrossRefGoogle Scholar
  4. 4.
    X. Xie, G. Wang, J. Dong, C. Wu, J. Radavich, G. Shen, and B.A. Lindsley: Superalloys 718, 625 and Various Derivatives, pp. 399-410, TMS, Warrendale, 2001.CrossRefGoogle Scholar
  5. 5.
    L. Jian, C.Y. Yuh, and M. Farooque: Corros. Sci., 2000, vol. 42, pp. 1573-1585.CrossRefGoogle Scholar
  6. 6.
    L. Geng, Y. Na, and N. Park: Mater. Des., 2007, vol. 28, pp. 978-981.CrossRefGoogle Scholar
  7. 7.
    G.A. Greene and C.C. Finfrock: Oxid. Met., 2001, vol. 55, pp. 505-521.CrossRefGoogle Scholar
  8. 8.
    D. Ulutan and T. Ozel: Int. J. Mach. Tools Manuf., 2011, vol. 51, pp. 250-280.CrossRefGoogle Scholar
  9. 9.
    E.O. Ezugwu, Z.M. Wang, and C.L. Okeke: Tribol. Trans., 1999, vol. 42, pp. 353-360.CrossRefGoogle Scholar
  10. 10.
    V. Bushlya, J.M. Zhou, F. Lenrick, P. Avdovic, and J.E. Ståhl: Procedia Engineering, 2011, vol. 19, pp. 60-66.CrossRefGoogle Scholar
  11. 11.
    M. Imran, P.T. Mativenga, A. Gholinia, and P.J. Withers: Int. J. Adv. Manuf. Technol., 2011, vol. 55, pp. 465-476.CrossRefGoogle Scholar
  12. 12.
    A.M. Wusatowska-Sarnek, B. Dubiel, A. Czyrska-Filemonowicz, P.R. Bhowal, N.B. Salah, and J.E. Klemberg-Sapieha: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3813-3825.CrossRefGoogle Scholar
  13. 13.
    R.L. Peng, J.M. Zhou, S. Johansson, A. Bellinius, V. Bushlya, and J.E. Ståhl: HTM Journal of Heat Treatment and Materials, 2014, vol. 69, pp. 46-53.CrossRefGoogle Scholar
  14. 14.
    A.R.C. Sharman, J.I. Hughes, and K. Ridgway: J. Mater. Process. Technol., 2006, vol. 173, pp. 359-367.CrossRefGoogle Scholar
  15. 15.
    A.R.C. Sharman, J.I. Hughes, and K. Ridgway: J. Mater. Process. Technol., 2015, vol. 216, pp. 123-132.CrossRefGoogle Scholar
  16. 16.
    L. Witek: Eng. Failure Anal., 2006, vol. 13, pp. 9-17.CrossRefGoogle Scholar
  17. 17.
    S.P. Mo, D.A. Axinte, T.H. Hyde, and N.N.Z. Gindy: J. Mater. Process. Technol., 2005, vol. 160, pp. 382-389.CrossRefGoogle Scholar
  18. 18.
    S. Gierlings and M. Brockmann: Advanced Materials Research, 2013, vol. 769, pp. 139-146.CrossRefGoogle Scholar
  19. 19.
    D.A. Axinte and N. Gindy: Wear, 2003, vol. 254, pp. 370-382.CrossRefGoogle Scholar
  20. 20.
    N.F. Suchkov and V.N. Latyshev: Machines Tooling, 1973, vol. 44, pp. 49-50.Google Scholar
  21. 21.
    D. Axinte: Int. J. Mach. Tools Manuf., 2007, vol. 47, pp. 2182-2188.CrossRefGoogle Scholar
  22. 22.
    V. Sajeev, L. Vijayaraghavan, and U.R.K. Rao: Int. J. Mech. Eng. Educ., 2000, vol. 28, pp. 88-92.CrossRefGoogle Scholar
  23. 23.
    F. Klocke, P. Vogtel, S. Gierlings, D. Lung, and D. Veselovac: Prod. Eng., 2013, vol. 7, pp. 593-600.CrossRefGoogle Scholar
  24. 24.
    R.J. Kamaladasa and Y.N. Picard: Microscopy, 2010, pp. 1583–90.Google Scholar
  25. 25.
    I.C. Noyan and J.B. Cohen: Residual stress measurement by diffraction and interpretation, pp. 117-130, Springer-Verlag New York Inc., New York, 1986.Google Scholar
  26. 26.
    J.A. Bailey: Wear, 1977, vol. 42, pp. 297-303.CrossRefGoogle Scholar
  27. 27.
    M.C. Shaw: Metal Cutting Principles, pp. 432-479, Oxford University Press, New York, 2005.Google Scholar
  28. 28.
    B.J. Griffiths: J. Tribol., 1987, vol. 109, pp. 525-530.CrossRefGoogle Scholar
  29. 29.
    J.M. Zhou, V. Bushlya, R.L. Peng, and J.E. Ståhl: Appl. Mech. Mater., 2012, vol. 117, pp. 1681-1688.Google Scholar
  30. 30.
    J. Barry and G. Byrne: Mater. Sci. Eng. A, 2002, vol. 325, pp. 356-364.CrossRefGoogle Scholar
  31. 31.
    K. Jacobus, R.E. DeVor, and S.G. Kapoor: J. Manuf. Sci. Eng., 2000, vol. 122, pp. 20-31.CrossRefGoogle Scholar
  32. 32.
    P.S. Prevéy: Residual Stress in Design, Process and Materials Selections, pp. 11-19, ASM Metals Park, OH, 1987.Google Scholar
  33. 33.
    N.A. Abukhshim, P.T. Mativenga, and M.A. Sheikh: Int. J. Mach. Tools Manuf., 2006, vol. 46, pp. 782-800.CrossRefGoogle Scholar
  34. 34.
    L.M. Clarebrough, M.E. Hargreaves, and G.W. West: Proceedings of the Royal Society of London, Series A, Mathematical and Physical and Engineering Sciences, 1955, vol. 232, pp. 252-270.CrossRefGoogle Scholar
  35. 35.
    O. Vöhringer: Advances in Surface Treatments, Technology-Applications-Effects, Pergamon Press, Oxford, 1987, vol. 4, pp. 367-396.Google Scholar
  36. 36.
    Z. Bi, J. Dong, M. Zhang, L. Zheng, and X. Xie: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 312-317.CrossRefGoogle Scholar
  37. 37.
    Z. Chen, R.L. Peng, P. Avdovic, J.M. Zhou, J. Moverare, F. Karlsson, and S. Johansson: MATEC Web of Conferences, vol. 14, no. 08002, pp. 1–6, EDP Sciences, 2014.Google Scholar
  38. 38.
    J.F. Radavich: Superalloys 718, 625, 706 and Various Derivatives, pp. 409-415, TMS, 1997.CrossRefGoogle Scholar
  39. 39.
    X.J. Pang, D.J. Dwyer, M. Gao, P. Valerio, and R.P. Wei: Scr. Mater., 1994, vol. 31, pp. 345-350.CrossRefGoogle Scholar
  40. 40.
    P. Lin, G. Palumbo, U. Erb, and K.T. Aust: Scr. Mater., 1995, vol. 33, pp. 1387-1392.CrossRefGoogle Scholar
  41. 41.
    D. Farkas: J. Phys. Condens. Matter, 2000, vol. 12, pp. R497.CrossRefGoogle Scholar
  42. 42.
    T.K. Hirsch, A.D.S. Rocha, F.D. Ramos, and T.R. Strohaecker: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3523-3530.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Z. Chen
    • 1
    Email author
  • R. Lin Peng
    • 1
  • J. Moverare
    • 1
  • P. Avdovic
    • 2
  • J. M. Zhou
    • 3
  • S. Johansson
    • 1
  1. 1.Division of Engineering MaterialsLinköping UniversityLinköpingSweden
  2. 2.Siemens Industrial Turbomachinery ABFinspångSweden
  3. 3.Division of Production and Materials EngineeringLund UniversityLundSweden

Personalised recommendations