Metallurgical and Materials Transactions A

, Volume 47, Issue 7, pp 3257–3262 | Cite as

The Influence of Cooling Rate During Crystallization on the Effective Partitioning Coefficient in High-Entropy Alloys from Al-Ti-Co-Ni-Fe System

  • Kamil GóreckiEmail author
  • Piotr Bala
  • Grzegorz Cios
  • Tomasz Koziel
  • Milena Stępień
  • Krzysztof Wieczerzak


An influence of two different cooling rates on the microstructure and dispersion of the components of high-entropy alloy from Al-Ti-Co-Ni-Fe system has been examined. For investigated alloys, the effective partitioning coefficient has been calculated. This factor indicates the degree of segregation of elements and allows for the specification of the differences between dendrites and interdendritic regions. The obtained results allow for the conclusion that the cooling rate substantially affect the growth of dendrites and the volume fraction of interdendritic regions as well as the partitioning of elements in the alloy. Furthermore, the obtained results made it possible to compare the influence of the cooling rate and the chemical composition on the dispersion of the alloying elements.


Cool Rate Interdendritic Region Slow Cool Rate Slow Crystallization Dendritic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004).CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, X. Yang, and P. K. Liaw, Jom 64, 830 (2012).CrossRefGoogle Scholar
  3. 3.
    K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Acta Mater. 61, 4887 (2013).CrossRefGoogle Scholar
  4. 4.
    J.-W. Yeh, Jom 65, 1759 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Ranganathan, Curr. Sci. 85, 1404 (2003).Google Scholar
  6. 6.
    M.-H. Tsai and J.-W. Yeh, Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
  7. 7.
    B. Cantor, Entropy 16, 4749 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Entropy 15, 3810 (2013).CrossRefGoogle Scholar
  9. 9.
    J.-W. Yeh, S. Lin, T. Chin, J. Gan, S. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chou, Metall. Mater. Trans. A 35, 2533 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics 41, 96 (2013).CrossRefGoogle Scholar
  12. 12.
    T. Kozieł, Arch. Metall. Mater. 60, 767 (2015).Google Scholar
  13. 13.
    R. D. Rawlings and A. E. Staton-Bevan, J. Mater. Sci. 10, 505 (1975).CrossRefGoogle Scholar
  14. 14.
    V. F. Bashev and O. I. Kushnerov, Phys. Met. Metallogr. 115, 692 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Chen, S. Lin, J.-W. Yeh, and S. Chen, Metall. Mater. Trans. A 37A, 1363 (2006).CrossRefGoogle Scholar
  16. 16.
    S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, and J.-W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).CrossRefGoogle Scholar
  17. 17.
    J. Cheng, D. Liu, X. Liang, and B. Xu, Acta Metall. Sin. 27, 1031 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Guo, C. Ng, and C. T. Liu, J. Alloys Compd. 557, 77 (2013).CrossRefGoogle Scholar
  19. 19.
    C.-Y. Hsu, C.-C. Juan, T.-S. Sheu, S.-K. Chen, and J.-W. Yeh, Jom 65, 1840 (2013).CrossRefGoogle Scholar
  20. 20.
    C. -Y. Hsu, T. S. Sheu, J. -W. Yeh, and S. K. Chen, Wear 268, 653 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Li, D. Ma, and Q. Zheng, J. Mater. Eng. Perform. 23, 1197 (2014).CrossRefGoogle Scholar
  22. 22.
    B. Ren, R.-F. Zhao, Z.-X. Liu, S.-K. Guan, and H.-S. Zhang, Rare Met. 33, 149 (2014).CrossRefGoogle Scholar
  23. 23.
    C. Tong, Y. Chen, S. Chen, J.-W. Yeh, T. Shun, C. Tsau, S. Lin, and S. Chang, Metall. Mater. Trans. A 36, 881 (2005).CrossRefGoogle Scholar
  24. 24.
    C. Ng, S. Guo, J. Luan, S. Shi, and C. T. Liu, Intermetallics 31, 165 (2012).CrossRefGoogle Scholar
  25. 25.
    A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
  26. 26.
    S. A. Firstov, T. G. Rogul’, N. A. Krapivka, S. S. Ponomarev, V. N. Tkach, V. V. Kovylyaev, V. F. Gorban’, and M. V. Karpets, Russ. Metall. 2014, 285 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Kamil Górecki
    • 1
    Email author
  • Piotr Bala
    • 1
    • 2
  • Grzegorz Cios
    • 2
  • Tomasz Koziel
    • 1
  • Milena Stępień
    • 2
  • Krzysztof Wieczerzak
    • 1
  1. 1.Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder MetallurgyAagh University of Science and TechnologyKrakówPoland
  2. 2.Academic Centre for Materials and NanotechnologyAgh University of Science and TechnologyKrakówPoland

Personalised recommendations