Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 6, pp 2726–2738 | Cite as

Correlation Between Microstructures and Tensile Properties of Strain-Based API X60 Pipeline Steels

  • Hyo Kyung Sung
  • Dong Ho Lee
  • Sunghak Lee
  • Hyoung Seop Kim
  • Yunjo Ro
  • Chang Sun Lee
  • Byoungchul Hwang
  • Sang Yong ShinEmail author
Article

Abstract

The correlation between the microstructures and tensile properties of strain-based American Petroleum Institute (API) X60 pipeline steels was investigated. Eight types of strain-based API X60 pipeline steels were fabricated by varying the chemical compositions, such as C, Ni, Cr, and Mo, and the finish cooling temperatures, such as single-phase and dual-phase regions. In the 4N and 5C steels, the volume fractions of bainitic ferrite (BF) and the secondary phases increased with the increasing C and adding Cr instead of Ni. In the 5C and 6NC steels, the volume fractions of acicular ferrite (AF) and BF decreased with increasing C and adding Ni, whereas the volume fractions of polygonal ferrite (PF) and the secondary phases increased. In the 6NC and 6NM steels, the volume fraction of BF was increased by adding Mo instead of Cr, whereas the volume fractions of PF and the secondary phases decreased. In the steels rolled in the single-phase region, the volume fraction of polygonal ferrite ranged from 40 to 60 pct and the volume fraction of AF ranged from 20 to 40 pct. In the steels rolled in the dual-phase region, however, the volume fraction of PF was more than 70 pct and the volume fraction of AF was below 20 pct. The strength of the steels with a high volume fraction of AF was higher than those of the steels with a high volume fraction of PF, whereas the yield point elongation and the strain hardening exponent were opposite. The uniform elongation after the thermal aging process decreased with increasing volume fraction of PF, whereas the uniform elongation increased with increasing volume fraction of AF. The strain hardening exponent increased with increasing volume fraction of PF, but decreased with increasing volume fraction of AF and effective grain size.

Keywords

Acicular Ferrite Mobile Dislocation Uniform Elongation Pipeline Steel Bainitic Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Ministry of Knowledge Economy under a Grant No. 100400-25, the Ministry of Land, the Infrastructure and Transport under a Grant No. 14IFIP-B067087-02-000000 and the 2013 Research Fund of University of Ulsan.

References

  1. 1.
    R. Denys: Pipeline Technology Conference, Elsevier, Amsterdam, 2000, vol. I & II, pp. 1-166.Google Scholar
  2. 2.
    J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore Polar Eng. Conf., Honolulu, Hawaii, 2003, pp. 10–18.Google Scholar
  3. 3.
    X.-L. Yang, Y.-B. Xu, X.-D. Tan, and D. Wu: Mater. Sci. Eng. A, 2014, vol. 607, pp. 53-62.CrossRefGoogle Scholar
  4. 4.
    Y. Shinohara, T. Hara, E. Tsuru, H. Asahi, Y. Terada, and N. Doi: Int. Conf. Offshore Mech. Arctic Eng., OMAE, Halkidiki, Greece, 2005, pp. 27–84.Google Scholar
  5. 5.
    D.B. Lillig: Proc. 18th Int. Offshore Polar Eng. Conf., Vancouver, Canada, 2008, pp. 1–12.Google Scholar
  6. 6.
    K. Nagai, Y. Shinohara, S. Sakamoto, E. Tsuru, and H. Asahi: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 56–60.Google Scholar
  7. 7.
    G. Shigesato, Y. Shinohara, T. Hara, M. Sugiyama, and H. Asahi: Proc. 16th Int. Offshore Polar Eng. Conf., Lisbon, Portugal, 2007, pp. 2983–87.Google Scholar
  8. 8.
    T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 73–79.Google Scholar
  9. 9.
    Y. Shinohara, T. Hara, E. Tsuru, and H. Asahi: Proc. 16th Int. Offshore Polar Eng. Conf., Lisbon, Portugal, 2007, pp. 2949–2954.Google Scholar
  10. 10.
    J.H. Baek, Y.P. Kim, C.M. Kim, W.S. Kim, and C.S. Seok: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1473-79.CrossRefGoogle Scholar
  11. 11.
    T. Hara, Y. Shinohara, Y. Hattori, T. Muraki, and N. Doi: Proc. 21th Int. Offshore Polar Eng. Conf., ISOPE, Hawaii, USA, 2011, pp. 575–80.Google Scholar
  12. 12.
    I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth-Heinemann, Oxford, 1988, pp. 80-100.CrossRefGoogle Scholar
  13. 13.
    T. Sourmail and V. Smanio: Acta Mater., 2013, vol. 61, pp. 2639-48.CrossRefGoogle Scholar
  14. 14.
    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2013, vol. 51, pp. 2611-22.CrossRefGoogle Scholar
  15. 15.
    M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, and G. Eggeler: Acta Mater., 2015, vol. 90, pp. 94-104.CrossRefGoogle Scholar
  16. 16.
    Z.H. Tang and W. Stumpf: Mater. Charact., 2008, vol. 59, pp. 717-28.CrossRefGoogle Scholar
  17. 17.
    V. Randle and O. Engler: Introduction to Texture Analysis, CRC Press, Boca Raton, FL, 2014, pp. 153–88.Google Scholar
  18. 18.
    ASTM Standard E8/E8m-13a: Standard Test Methods for Tension Testing of Metallic Materials, ASTM, West Conshohocken, PA, 2013.Google Scholar
  19. 19.
    S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1493-1507.CrossRefGoogle Scholar
  20. 20.
    20. T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, pp. 1–100.Google Scholar
  21. 21.
    G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35, pp. 937-45.CrossRefGoogle Scholar
  22. 22.
    H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2004, vol. A378, pp. 34-39.CrossRefGoogle Scholar
  23. 23.
    H. Ohtani, S. Okaguchi, Y. Fujishiro, and Y. Ohmori: Metall. Trans. A, 1990, vol. 21, pp. 877-88.CrossRefGoogle Scholar
  24. 24.
    M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505-16.CrossRefGoogle Scholar
  25. 25.
    B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21, pp. 817-29.CrossRefGoogle Scholar
  26. 26.
    F.G. Caballero, M.K. Miller, C. Garcia-Mateo, J. Cornide, and M.J. Santofimia: Scripta Mater., 2012, vol. 27, pp. 846-49.CrossRefGoogle Scholar
  27. 27.
    W.B. Lee, S.G. Hong, C.G. Park, K.H. Kim, and S.H. Park: Scripta Mater., 2000, vol. 43, pp. 319-24.CrossRefGoogle Scholar
  28. 28.
    H. Asahi: ISIJ Int., 2002, vol. 42, pp. 1150-55.CrossRefGoogle Scholar
  29. 29.
    M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658-70.CrossRefGoogle Scholar
  30. 30.
    D. Hull and D.J. Bacon: Introduction to Dislocations, 5th Ed., Elsevier Ltd., Amsterdam, 2011, pp. 1-272.CrossRefGoogle Scholar
  31. 31.
    31. A.H. Cottrell: Trans. Am. Inst. Mech. Eng.. 1958, vol. 212, pp. 192-203.Google Scholar
  32. 32.
    A. Ma, F. Roters, and D. Raabe: Acta Mater., 2006, vol. 54, pp. 2181-94.CrossRefGoogle Scholar
  33. 33.
    N.J. Kim and G. Thomas: Scripta Metall., 1984, vol. 18, pp. 817-20.CrossRefGoogle Scholar
  34. 34.
    R.T. Li, X.R. Zuo, Y.Y. Hu, Z.W. Wang, and D.X. Hu: Mater. Charact., 2011, vol. 62, pp. 801-06.CrossRefGoogle Scholar
  35. 35.
    L.P. Kubin and A. Mortensen: Scripta Mater., 2003, vol. 48, pp. 119-25.CrossRefGoogle Scholar
  36. 36.
    H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 47, pp. 1239-63.CrossRefGoogle Scholar
  37. 37.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738-46.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Hyo Kyung Sung
    • 1
  • Dong Ho Lee
    • 2
  • Sunghak Lee
    • 2
  • Hyoung Seop Kim
    • 2
  • Yunjo Ro
    • 3
  • Chang Sun Lee
    • 3
  • Byoungchul Hwang
    • 4
  • Sang Yong Shin
    • 5
    Email author
  1. 1.Department of Materials Science and EngineeringReCAPT Gyeongsang National UniversityJinjuKorea
  2. 2.Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea
  3. 3.POSCOA Research Group Team, Technical Research LaboratoriesPOSCOGwangyangKorea
  4. 4.Department of Materials Science and EngineeringSeoul National University of Science and TechnologySeoulKorea
  5. 5.School of Materials Science and EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations