Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 6, pp 2914–2926 | Cite as

Effect of B, Zr, and C on Hot Tearing of a Directionally Solidified Nickel-Based Superalloy

  • J. Grodzki
  • N. Hartmann
  • R. Rettig
  • E. Affeldt
  • R. F. Singer
Article

Abstract

The effect of the minor elements B, Zr, and C on the castability of a Nickel-based γ′-strengthened superalloy has been investigated. Tube-like specimens were prepared by directional solidification where the rigid ceramic core leads to hoop stresses and grain boundary cracking. It was found that an important improvement in castability can be achieved by adjusting the minor elemental composition. Too low C (≤0.15 pct) and too high B and Zr contents (≥0.05 pct) lead to material that is very prone to solidification cracking and should be avoided. The results cannot be rationalized on the basis of the current models for solidification cracking. Instead, pronounced hot tearing is observed to occur at high amounts of γ/γ′-eutectic and high Zr contents. The critical film stage where dendrites at the end of solidification do not touch and are separated by thin liquid films must be avoided. How Zr promotes the film stage will be discussed in the paper.

Keywords

Hoop Stress Boundary Energy Freezing Range Differential Scanning Calorimetric Measurement Good Castability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project was partly funded by the Bavarian State Ministry of Education, Science and Arts, and the Bavarian State Ministry of Economics, Infrastructure, Traffic and Technology within the KW21 research framework and was undertaken in collaboration with MTU Aero Engines Munich, Germany. The project was also partly funded by the German Science Foundation Collaborative Research Centre SFB/Transregio 103, project B1. This support is gratefully acknowledged.

References

  1. 1.
    R. Reed: The superalloys, 1st ed., Cambridge University Press, Cambridge, 2006CrossRefGoogle Scholar
  2. 2.
    F.L. Versnyder and M.E. Shank: Mater. Sci. Eng., 1970, vol. 6, pp. 213-247CrossRefGoogle Scholar
  3. 3.
    J. Rösler, M. Konter and C. Tönnes: Superalloys 1996, TMS, Warrendale, 1996, pp. 515-522Google Scholar
  4. 4.
    K. Heck, J.R. Blackford and R.F. Singer: Mater. Sci. Technol., 1999, vol. 15, pp. 213-220CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, A. Volek and R.F. Singer: J. Mater. Res., 2006, vol. 21, pp. 2361-2370CrossRefGoogle Scholar
  6. 6.
    G.K. Sigworth: AFS Trans., 1996, vol. 155, pp. 1053-1062Google Scholar
  7. 7.
    D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1511-1519CrossRefGoogle Scholar
  8. 8.
    W.S. Pellini: Foundry, 1952, vol. 80, pp. 124-199Google Scholar
  9. 9.
    M. Rappaz, J.-M. Drezet and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30, pp. 449-455CrossRefGoogle Scholar
  10. 10.
    R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1-24CrossRefGoogle Scholar
  11. 11.
    M.C. Flemings: Solidification processing, Mcgraw-Hill College, New York, 1974Google Scholar
  12. 12.
    T.W. Clyne and G.J. Davies: Br. Foundrymen, 1981, vol. 74, pp. 65-73Google Scholar
  13. 13.
    T.W. Clyne, M. Wolf and W. Kurz: Metal. Trans. B, 1982, vol. 13, pp. 259-266CrossRefGoogle Scholar
  14. 14.
    J. Zhang and R.F. Singer: Acta Mater., 2002, vol. 50, pp. 1869-1879CrossRefGoogle Scholar
  15. 15.
    J.C. Borland: Br. Weld. J., 1960, vol. 7, pp. 508-512Google Scholar
  16. 16.
    Y. Zhu, J.F. Radavich, Z. Zheng, X. Ning, L. Lou, X. Xie, C. Shi: Superalloys 2000, TMS, Warrendale, 2000, pp. 329-339CrossRefGoogle Scholar
  17. 17.
    K. Harris, G.L. Erickson and R.E. Schwer: Superalloys, TMS, Warrendale, 1984, pp. 221-230CrossRefGoogle Scholar
  18. 18.
    W. Esser, U. Paul, and S. Piegert, U.S. Patent 20130136649, filled 13 Nov 2012, and issued 30 May 2013Google Scholar
  19. 19.
    Y. Zhu, S. Zhang, T. Zhang, J. Zhang, Z. Hu, X. Xie, C. Shi: Superalloys, TMS, Warrendale, 1992, pp. 145-154Google Scholar
  20. 20.
    D.L. Sponseller: Superalloys, TMS, Warrendale, 1996, pp. 259-270Google Scholar
  21. 21.
    A. Heckl, R. Rettig, S. Cenanovic, M. Göken and R.F. Singer: J. Cryst. Growth, 2010, vol. 312, pp. 2137-2144CrossRefGoogle Scholar
  22. 22.
    J. Zhang and R.F. Singer: Z. Metallkd., 2002, vol. 93, pp. 806-811CrossRefGoogle Scholar
  23. 23.
    J. Zhang and R.F. Singer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1337-1342CrossRefGoogle Scholar
  24. 24.
    C.S. Smith: Trans. TMS-AIME, 1948, vol. 175, pp. 15-51Google Scholar
  25. 25.
    M. Rappaz, A. Jacot and W.J. Boettinger: Metall. Mater. Trans. A, 2003, vol. 34, pp. 467-479CrossRefGoogle Scholar
  26. 26.
    M.M. Franke, M. Hilbinger, A. Heckl and R.F. Singer: Adv. Mater. Res., 2011, vol. 278, pp. 156-161CrossRefGoogle Scholar
  27. 27.
    M.M. Franke, R.F. Singer and I. Steinbach: Mod. Sim. Mater. Sci. Eng., 2014, vol. 22, pp. 1-9CrossRefGoogle Scholar
  28. 28.
    C.S. Wukusick, T. Tom and L Buchakjian Jr, U.S. Patent 4169742, filled October 17, 1977, and issued October 2, 1979Google Scholar
  29. 29.
    J. Zhang and R.F. Singer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 939-946CrossRefGoogle Scholar
  30. 30.
    E. Tzimas and A. Zavaliangos: J. Mater. Sci., 2000, vol. 35, pp. 5319-5329CrossRefGoogle Scholar
  31. 31.
    Y. Zhou, A. Volek and R.F. Singer: Metall. Mater. Trans. A, 2005, vol. 36, pp. 651-656CrossRefGoogle Scholar
  32. 32.
    Y. Zhou and A. Volek: Mater. Sci. Eng., 2008, vol. A479, pp. 324-332CrossRefGoogle Scholar
  33. 33.
    G.R. Pease: Weld. J. Res. Suppl., 1957, vol. 36, pp. 330s-334sGoogle Scholar
  34. 34.
    S.A. David, W.A. Jemian, C.T. Liu and J.A. Horton: Weld. J. Res. Suppl., 1985, vol. 64, pp. 22s-28sGoogle Scholar
  35. 35.
    C.G. Bieber and R.F. Decker: Trans. TMS-AIME, 1961, vol. 221, pp. 629-636Google Scholar
  36. 36.
    M.P. Seah: Acta Metall., 1980, vol. 28, pp. 955-962CrossRefGoogle Scholar
  37. 37.
    N. Wang, S. Mokadem, M. Rappaz and W. Kurz: Acta Mater., 2004, vol. 52, pp. 3173-3182CrossRefGoogle Scholar
  38. 38.
    P. Lejçek: Grain boundary segregation in metals, 1st ed., Spriner Verlag, Berlin, 2010CrossRefGoogle Scholar
  39. 39.
    D. Tytko, P.-P. Choi, J. Klöwer, A. Kostka, G. Inden and D. Raabe: Acta Mater., 2012, vol. 60, pp. 1731-1740CrossRefGoogle Scholar
  40. 40.
    H.-E. Huang and C.-H. Koo: Mater. Trans., 2004, vol. 45, pp. 554-561CrossRefGoogle Scholar
  41. 41.
    A. Buchon, A. Menand and D. Blavette: Surf. Sci., 1991, vol. 246, pp. 218-224CrossRefGoogle Scholar
  42. 42.
    L. Letellier, S. Chambreland, P. Duval and D. Blavette: Appl. Surf. Sci., 1993, vol. 67, pp. 305-310CrossRefGoogle Scholar
  43. 43.
    N. Eustathopoulos: Int. Met. Rev., 1983, vol. 28, pp. 189-210CrossRefGoogle Scholar
  44. 44.
    R.F. Decker and J.W. Freeman: Trans. TMS-AIME, 1960, vol. 218, pp. 277-285Google Scholar
  45. 45.
    K. Harris and J.B. Wahl: Mater. Sci. Technol., 2009, vol. 25, pp. 147-153CrossRefGoogle Scholar
  46. 46.
    S. Yamaguchi: Mater. Sci. Technol., 1979, vol. 6, pp. 170-175Google Scholar
  47. 47.
    K. Heck, Rißbildung bei der gerichteten Erstarrung von Nickel-Basislegierungen im Vakuumfeinguß, Dissertation, University of Erlangen-Nuremberg, Erlangen, 1996Google Scholar
  48. 48.
    D. McLean: Grain boundaries in metals, Clarendon Press, Oxford, 1957Google Scholar
  49. 49.
    J.E. Doherty, A.F. Giamei and B.H. Kear: Can. Metall. Q., 1974, vol. 13, pp. 229-236CrossRefGoogle Scholar
  50. 50.
    J.H. Westbrook: Met. Rev., 1964, vol. 9, pp. 415-471Google Scholar
  51. 51.
    T.M. Williams, A.M. Stoneham and D.R. Harries: Met. Sci., 1976, vol. 10, pp. 14-19CrossRefGoogle Scholar
  52. 52.
    J.E. Doherty, B.H. Kear and A.F. Giamei: J. Met., 1971, vol. 23, pp. 59-62Google Scholar
  53. 53.
    Y.Z. Zhou and A. Volek: Scr. Mater., 2006, vol. 54, pp. 2169-2174CrossRefGoogle Scholar
  54. 54.
    H.U. Hong, I.S. Kim, B.G. Choi, Y.S. Yoo and C.Y. Jo: Metall. Mater. Trans. A, 2012, vol. 43, pp. 173-181CrossRefGoogle Scholar
  55. 55.
    S. Terzi, L. Salvo, M. Suéry, N. Limodin, J. Adrien, E. Maire, Y. Pannier, M. Bornert, D. Bernard, M. Felberbaum, M. Rappaz and E. Boller: Scr. Mater., 2009, vol. 61, pp. 449-452CrossRefGoogle Scholar
  56. 56.
    B. Cai, S. Karagadde, L. Yuan, T.J. Marrow, T. Connolley and P.D. Lee: Acta Mater., 2014, vol. 76, pp. 371-380CrossRefGoogle Scholar
  57. 57.
    O. Ludwig, J.-M. Drezet, P. Ménésès, C.L. Martin and M. Suéry: Mater. Sci. Eng., 2005, vol. A413-414, pp. 174-179CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • J. Grodzki
    • 1
    • 2
  • N. Hartmann
    • 3
  • R. Rettig
    • 3
  • E. Affeldt
    • 4
  • R. F. Singer
    • 3
  1. 1.WTM InstituteUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Siemens AGBerlinGermany
  3. 3.WTM Institute, Department of Materials ScienceUniversity of Erlangen-NurembergErlangenGermany
  4. 4.MTU Aero Engines AGMunichGermany

Personalised recommendations