Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 5, pp 1960–1974 | Cite as

Effect of Multistage Heat Treatment on Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel

  • Qingdong Liu
  • Haiming Wen
  • Han Zhang
  • Jianfeng GuEmail author
  • Chuanwei Li
  • Enrique J. Lavernia
Article

Abstract

The influence of Cu-rich precipitates (CRPs) and reverted austenite (RA) on the strength and impact toughness of a Cu-containing 3.5 wt pct Ni high-strength low-alloy (HSLA) steel after various heat treatments involving quenching (Q), lamellarization (L), and tempering (T) is studied using electron back-scatter diffraction, transmission electron microscopy, and atom probe tomography. The QT sample exhibits high strength but low impact toughness, whereas the QL samples mostly possess improved impact toughness but moderate strength, but the QLT samples again have degraded impact toughness due to additional tempering. The dispersion of nanoscale CRPs, which are formed during tempering, is responsible for the enhanced strength but simultaneously leads to the degraded impact toughness. The RA formed during lamellarization contributes to the improved impact toughness. Based on the present study, new heat treatment schedules are proposed to balance strength and impact toughness by optimizing the precipitation of CRPs and RA.

Keywords

Austenite Martensite Impact Toughness Atom Probe Tomography Unstable Crack Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2011CB012904), the 111 Project of China (No. B13035), and the China Postdoctoral Science Foundation (No. 2013M541517). We extend our gratitude to Professor Emeritus Shipu Chen at Shanghai Jiaotong University for kind discussions.

References

  1. 1.
    K. Nishioka, and K. Ichikawa: Sci. Technol. Adv. Mater., 2012, vol. 13, pp. 023001.CrossRefGoogle Scholar
  2. 2.
    M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo: J. Mater. Eng. Perform., 1998, vol. 7, pp. 247-257.CrossRefGoogle Scholar
  3. 3.
    Z.W. Zhang, C.T. Liu, Y.R. Wen, A. Hirata, S. Guo, G. Chen, M.W. Chen, and B.A. Chin: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 351-359.CrossRefGoogle Scholar
  4. 4.
    Y. Nagai, Z. Tang, M. Hassegawa, T. Kanai, and M. Saneyasu: Phy. Rev. B, 2001, vol. 63, p. 134110.CrossRefGoogle Scholar
  5. 5.
    J. Kang, C. Wang, and G.D. Wang: Mater. Sci. Eng. A., 2012, vol. 553, pp. 96-104.CrossRefGoogle Scholar
  6. 6.
    W.H. Zhou, X.L. Wang, P.K.C. Venkatsurya, H. Guo, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 607, pp. 569-577.CrossRefGoogle Scholar
  7. 7.
    J.W. Morris, Z. Guo, C.R. Krenn, and Y.H. Kim: ISIJ Int., 2001, vol. 41, pp. 599-611.CrossRefGoogle Scholar
  8. 8.
    J.I. Kim, C.K. Syn, and J.W. Morris: Metall. Trans. A, 1983, vol. 14A, pp. 93-103.CrossRefGoogle Scholar
  9. 9.
    B. Fultz, J.I. Kim, Y.H. Kim, H.J. Kim, G.O. Fior, and JW Morris: Metall. Trans. A, 1985, vol. 16A, pp. 2237-49.CrossRefGoogle Scholar
  10. 10.
    A Saha, and GB Olson: J. Computer-Aided Mater. Des., 2007, vol. 14, pp. 177-200.CrossRefGoogle Scholar
  11. 11.
    S. Kang, E.D. Moor, and J.G. Speer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1005-1011.CrossRefGoogle Scholar
  12. 12.
    E.D. Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin: Scripta Mater., 2011, vol. 64, pp. 185-188.CrossRefGoogle Scholar
  13. 13.
    Y.S. Ahn, H.D. Kim, T.S. Byun, Y.J. Oh, G.M. Kim, and J.H. Hong: Nucl. Eng. Des., 1999, vol. 194, pp. 161-177.CrossRefGoogle Scholar
  14. 14.
    Y.Y. Chen, B.G. Cheng, and D.S. Liu: Heat treatment of Metals, 2012, vol. 37, pp.77-82. (in Chinese).Google Scholar
  15. 15.
    D Isheim, AH Hunter, XJ Zhang, DN Seidman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3046-3059.CrossRefGoogle Scholar
  16. 16.
    N. Nakada, J. Syarif, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2004, vol. 374, pp. 137-144.CrossRefGoogle Scholar
  17. 17.
    Thermo-Calc Software AB and Foundation of Computational Thermodynamics. ThermoCalc users’ guide, version S. Stockholm: Thermo-Calc Software AB, 2011.Google Scholar
  18. 18.
    L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma, and S van der Zwaag: Mater. Sci. Eng. A, 2001, vol. 313, pp. 145-152.CrossRefGoogle Scholar
  19. 19.
    M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, First ed., Kluwer Academic/Plenum Publishers, New York, 1999.Google Scholar
  20. 20.
    H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and EJ Lavernia: Acta Mater., 2013, vol. 61, pp. 2769-2782.CrossRefGoogle Scholar
  21. 21.
    K.C. Russell, and L.M. Brown: Acta Metall., 1972, vol. 20, pp. 969-974.CrossRefGoogle Scholar
  22. 22.
    S.H. Hashemi: Int. J. Pres. Ves. Pip., 2009, vol. 86, pp. 533-540.CrossRefGoogle Scholar
  23. 23.
    S.H. Hashemi: Int. J. Pres. Ves. Pip., 2008, vol. 85, pp. 879-884.CrossRefGoogle Scholar
  24. 24.
    Q.D. Liu, and S.J. Zhao: MRS Communi., 2012, vol. 2, pp. 127-132.CrossRefGoogle Scholar
  25. 25.
    L.T. Stephenson, M.P. Moody, P.V. Liddicoat, and S.P. Ringer: Microsc. Microanal., 2007, vol. 13, pp. 448-463.CrossRefGoogle Scholar
  26. 26.
    P.J. Othen, M.L. Jenkins, and G.D.W. Smith: Philos. Mag., 1994, vol. 70A, pp. 1-24.CrossRefGoogle Scholar
  27. 27.
    P.J. Othen, M.L. Jenkins, G.D.W. Smith, and W.J. Phythian: Philos. Mag. Lett., 1991, vol. 64, pp. 383-391.CrossRefGoogle Scholar
  28. 28.
    Q.D. Liu, J.F. Gu, and C.W. Li: J. Mater. Res., 2014, vol. 29, pp. 950-958.CrossRefGoogle Scholar
  29. 29.
    H. Ivan, and K. Ernst: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3546-3551.CrossRefGoogle Scholar
  30. 30.
    J. Takahashi, K. Kawakami, and Y. Kobayashi: Mater. Sci. Eng. A, 2012, vol. 535, pp. 144-152.CrossRefGoogle Scholar
  31. 31.
    R.P. Kolli, and D.N. Seidman: Acta Mater., 2008, vol. 56, pp. 2073-2088.CrossRefGoogle Scholar
  32. 32.
    D.J. Bacon, and Y.N. Osetsky: Philos. Mag., 2009, vol. 89, pp. 3333-3349.CrossRefGoogle Scholar
  33. 33.
    M. Lozano-Perez, M.L. Jenkins, and J.M. Titchmarsh: Philos. Mag. Lett., 2006, vol. 86, pp. 367-374.CrossRefGoogle Scholar
  34. 34.
    S.Y. Hu, Y.L. Li, and K. Watanabe: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 641-655.CrossRefGoogle Scholar
  35. 35.
    Z. Chen, N. Kioussis, and N. Ghoniem: Phys. Rev. B, 2009, vol. 80, p. 184104.CrossRefGoogle Scholar
  36. 36.
    T. Hara, N. Maruyama, Y. Shinohara, H. Asahi, G. Shigesato, M. Sugiyama, and T. Koseki: ISIJ Inter., 2009, vol. 49, pp. 1792-1800.CrossRefGoogle Scholar
  37. 37.
    D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi: Acta Mater., 2013, vol. 61, pp. 6132-6152.CrossRefGoogle Scholar
  38. 38.
    Q.D. Liu, J.F. Gu, C.W. Li, and L.Z. Han. Mater. Character., 2015, under review.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Qingdong Liu
    • 1
    • 2
  • Haiming Wen
    • 3
    • 4
  • Han Zhang
    • 5
  • Jianfeng Gu
    • 1
    • 2
    Email author
  • Chuanwei Li
    • 1
    • 2
  • Enrique J. Lavernia
    • 6
  1. 1.Institute of Materials Modification and Modelling, School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiP.R. China
  2. 2.Collaborative Innovation Center for Advanced Ship and Deep-Sea ExplorationShanghai Jiaotong UniversityShanghaiP.R. China
  3. 3.Department of Nuclear Engineering & Health PhysicsIdaho State UniversityIdaho FallsUSA
  4. 4.Characterization and Advanced PIE DivisionIdaho National LaboratoryIdaho FallsUSA
  5. 5.Department for Microstructure Physics and Alloy DesignMax-Planck-Institut für EisenforschungDüsseldorfGermany
  6. 6.Department of Chemical Engineering and Materials ScienceUniversity of California at DavisDavisUSA

Personalised recommendations