Metallurgical and Materials Transactions A

, Volume 47, Issue 5, pp 2471–2480 | Cite as

Role of the Surface in Solid–Solid Phase Transitions: Molecular Dynamics Study of the α-γ Transition in Fe

Article
  • 256 Downloads

Abstract

Using classical molecular dynamics simulation, we study the role of surfaces on solid–solid phase transformations. We contrast the transformation behavior of a thin film (two free surfaces) with a bulk system and with a system containing only one free surface. We focus on bcc Fe and induce the transformation from the bcc to the fcc phase by applying biaxial strain. We find that the critical strain at which the material transforms is independent of whether the system has a free surface or not. However, the nucleation mechanism of the new phase and also the transformation speed are strongly influenced by the existence of surfaces. While bulk systems fail early (after phase transformation to a polycrystal) under the applied load, systems with a free surface show a considerably higher ductility.

Notes

Acknowledgments

We acknowledge support by the Deutsche Forschungsgemeinschaft via the Sonderforschungsbereich 926.

References

  1. 1.
    1.D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys (Chapman & Hall, London, 1992)CrossRefGoogle Scholar
  2. 2.
    [2] W. Pepperhoff and M. Acet, Constitution and Magnetism of Iron and its Alloys (Springer, Berlin, 2001).CrossRefGoogle Scholar
  3. 3.
    E. Pereloma and D. V. Edmonds, eds: Phase Transformations in Steels: Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, vol. 2, Woodhead Publishing Limited, Cambridge, U.K., 2012.Google Scholar
  4. 4.
    P.E. Blöchl, C. Joachim, and A.J. Fisher, eds: Computations for the Nano-Scale, NATO ASI Series E, vol. 240, Kluwer Academic Press, Dordrecht, 1993.Google Scholar
  5. 5.
    P.M. Duxbury and T.J. Pence, eds.: Dynamics of Crystal Surfaces and Interfaces, 2nd ed., Plenum Publishing Corporation, New York, 1997.Google Scholar
  6. 6.
    [6] J. A. Venables, Introduction to Surface and Thin Film Processes (Cambridge University Press, Cambridge, 2000).CrossRefGoogle Scholar
  7. 7.
    [7] L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003).Google Scholar
  8. 8.
    [8] Q. Mei and K. Lu, Prog. Mater. Sci. 52, 1175 (2007).CrossRefGoogle Scholar
  9. 9.
    9.P. Tian, Annu. Rep. Prog. Chem. Sect. C 104: 142 (2008)CrossRefGoogle Scholar
  10. 10.
    [10] D. A. Hardwick, Thin Solid Films 154, 109 (1987).CrossRefGoogle Scholar
  11. 11.
    11.R.P. Vinci and J.J. Vlassak: Annu. Rev. Mater. Sci., 1996, vol. 26, pp. 431–62.CrossRefGoogle Scholar
  12. 12.
    [12] W. Brückner, W. Pitschke, J. Thomas, and G. Leitner, J. Appl. Phys. 87, 2219 (2000).CrossRefGoogle Scholar
  13. 13.
    
[13] Y. Ma, A. Setzer, J. W. Gerlach, F. Frost, P. Esquinazi, and S. G. Mayr, Adv. Funct. Mater. 22, 2529 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Ko, T. Bae, and J. Hong, J. Appl. Phys. 112, 113919 (2012).CrossRefGoogle Scholar
  15. 15.
    15.T. Edler, S. Hamann, A. Ludwig, and S. G. Mayr, Scripta Mater. 64, 89-92 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Golan, A. Axelevitch, B. Sigalov, and B. Gorenstein: Microelectron. J., 2003, vol. 34, pp. 255–58.Google Scholar
  17. 17.
    [17] J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, J. Appl. Phys. 96, 1209 (2004).CrossRefGoogle Scholar
  18. 18.
    W. Liang, M. Zhou, and F. Ke: Nano Lett., 2005, vol. 5, pp. 2039–42.Google Scholar
  19. 19.
    [19] H. S. Park, K. Gall, and J. A. Zimmerman, Phys. Rev. Lett. 95, 255504 (2005).CrossRefGoogle Scholar
  20. 20.
    
[20] W. Liang and M. Zhou, Phys. Rev. B 73, 115409 (2006).CrossRefGoogle Scholar
  21. 21.
    [21] C. Ji and H. S. Park, Nanotechnology 18, 305704 (2007).CrossRefGoogle Scholar
  22. 22.
    [22] B. Wang, E. Sak-Saracino, L. Sandoval, and H. M. Urbassek, Model. Simul. Mater. Sci. Eng. 22, 045003 (2014).CrossRefGoogle Scholar
  23. 23.
    [23] F. Ma and K. W. Xu, J. Mater. Res. 22, 1299 (2007).CrossRefGoogle Scholar
  24. 24.
    [24] L. Sandoval and H. M. Urbassek, Nano Lett. 9, 2290 
(2009).CrossRefGoogle Scholar
  25. 25.
    [25] L. Sandoval and H. M. Urbassek, Nanotechnology 20, 
325704 (2009).CrossRefGoogle Scholar
  26. 26.
    [26] L. Sandoval and H. M. Urbassek, Appl. Phys. Lett. 95, 
191909 (2009).CrossRefGoogle Scholar
  27. 27.
    27.B. R. Cuenya, M. Doi, S. Löbus, R. Courths, and W. Keune, Surf. Sci. 493, 338-60 (2001)CrossRefGoogle Scholar
  28. 28.
    [28] B. Wang and H. M. Urbassek, Model. Simul. Mater. Sci. 
Eng. 21, 085007 (2013).CrossRefGoogle Scholar
  29. 29.
    S. Plimpton: J. Comput. Phys., 1995, vol. 117, pp. 1–19. http://www.lammps.sandia.gov/.
  30. 30.
    [30] C. Engin, L. Sandoval, and H. M. Urbassek, Model. 
Simul. Mater. Sci. Eng. 16, 035005 (2008).CrossRefGoogle Scholar
  31. 31.
    [31] R. Meyer and P. Entel, Phys. Rev. B 57, 5140 (1998).CrossRefGoogle Scholar
  32. 32.
    [32] L. Sandoval, H. M. Urbassek, and P. Entel, New J. Phys. 
11, 103027 (2009).CrossRefGoogle Scholar
  33. 33.
    [33] L. Sandoval, H. M. Urbassek, and P. Entel, Phys. Rev. 
B 80, 214108 (2009).CrossRefGoogle Scholar
  34. 34.
    H.M. Urbassek and L. Sandoval: in Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, vol. 2, E. Pereloma and D.V. Edmonds, eds., Woodhead Publishing Limited, Cambridge, U.K., 2012, pp. 433–63.Google Scholar
  35. 35.
    [35] P. Entel, R. Meyer, K. Kadau, H. C. Herper, and E. Hoffmann, Eur. Phys. J. B 5, 379 (1998).CrossRefGoogle Scholar
  36. 36.
    [36] P. Entel, R. Meyer, and K. Kadau, Philos. Mag. B 80, 183 (2000).CrossRefGoogle Scholar
  37. 37.
    P. Entel, M. Kreth, R. Meyer, and K. Kadau: in Modeling and Simulating Materials Nanoworld, P. Vincenzini and F. Zerbetto, eds., Techna Group, Faenza, 2004, p. 101.Google Scholar
  38. 38.
    [38] K. Kadau, R. Meyer, and P. Entel, Surf. Rev. Lett. 6, 35 (1999).CrossRefGoogle Scholar
  39. 39.
    
[39] K. Kadau and P. Entel, J. Magn. Magn. Mater. 198, 531 (1999).CrossRefGoogle Scholar
  40. 40.
    M. Müller, P. Erhart, and K. Albe: J. Phys.: Condens. Matter, 2007, vol. 19, p. 326220.Google Scholar
  41. 41.
    T. Lee, M.I. Baskes, S.M. Valone, and J.D. Doll: J. Phys.: Condens. Matter, 2012, vol. 24, p. 225404.Google Scholar
  42. 42.
    [42] S. J. Wang, H. Wang, K. Du, W. Zhang, M. L. Sui, and S. X. Mao, Nat. Commun. 5, 3433 (2014).Google Scholar
  43. 43.
    B. Wang and H.M. Urbassek: Comput. Mater. Sci., 2014, vol. 81, pp. 170–77.Google Scholar
  44. 44.
    [44] W. Shinoda, M. Shiga, and M. Mikami, Phys. Rev. B 69, 134103 (2004).CrossRefGoogle Scholar
  45. 45.
    
[45] D. Faken and H. Jonsson, Comput. Mater. Sci. 2, 279 (1994).CrossRefGoogle Scholar
  46. 46.
    
[46] C. Engin and H. M. Urbassek, Comput. Mater. Sci. 41, 297 (2008).CrossRefGoogle Scholar
  47. 47.
    B. Wang and H. M. Urbassek: Phys. Rev. B, 2013, vol. 87, p. 104108.Google Scholar
  48. 48.
    [48] B. Wang and H. M. Urbassek, Acta Mater. 61, 5979 (2013).CrossRefGoogle Scholar
  49. 49.
    D. Rittel, G. Ravichandran, and A. Venkert: Mater. Sci. Eng. A, 2006, vol. 432, 191–201.Google Scholar
  50. 50.
    [50] L. M. Dougherty, G. T. Gray III, E. K. Cerreta, R. J. McCabe, R. D. Field, and J. F. Bingert, Scripta Materialia 60, 772 (2009).CrossRefGoogle Scholar
  51. 51.
    [51] B. Wang, E. Sak-Saracino, N. Gunkelmann, and H. M. Urbassek, Comput. Mater. Sci. 82, 399 (2014).CrossRefGoogle Scholar
  52. 52.
    
[52] S. Tateyama, Y. Shibuta, and T. Suzuki, Scr. Mater. 59, 971 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Physics Department and Research Center OPTIMASUniversity KaiserslauternKaiserslauternGermany

Personalised recommendations