Metallurgical and Materials Transactions A

, Volume 47, Issue 4, pp 1729–1739 | Cite as

Orientation Selection and Microstructural Evolution in Directionally Solidified Tb0.3Dy0.7Fe1.95

  • Mithun Palit
  • S. Banumathy
  • A. K. Singh
  • S. Pandian
  • Kamanio Chattopadhyay


Tb0.3Dy0.7Fe1.95 alloy was directionally solidified by using a modified Bridgman technique at a wide range of growth rates of 5 to 100 cm/h. The directionally grown samples exhibited plane front solidification morphology up to a growth rate of 90 cm/h. Typical island banding feature was observed closer to the chilled end, which eventually gave rise to irregular peritectic coupled growth (PCG). The PCG gained prominence with an increase in the growth rate. The texture study revealed formation of strong 〈311〉 texture in a lower growth rate regime, 〈110〉 and “rotated 〈110〉” in an intermediate growth regime, and 〈112〉 in a higher growth rate regime. In-depth analysis of the atomic configuration of a solid–liquid interface revealed that the growth texture is influenced by the kinetics of atomic attachment to the solid–liquid interface, which is intimately related to a planar packing fraction and an atomic stacking sequence of the interfacial plane. The mechanism proposed in this article is novel and will be useful in addressing the orientation selection mechanism of topologically closed packed intermetallic systems. The samples grown at a higher growth rate exhibit larger magnetostriction (λ) and dλ/dH owing to the absence of pro-peritectic (Tb,Dy)Fe3 and formation of 〈112〉 texture, which lies closer to the easy magnetization direction (EMD).


Pole Figure Texture Component Orientation Selection Peritectic Alloy Easy Magnetization Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support rendered by DRDO and the constant encouragement given by the Director at DMRL are greatly acknowledged. The technical support extended by Dr S.V. Kamat, Head of Functional Material Division of DMRL, is also gratefully acknowledged.


  1. 1.
    A.E. Clark, H.S. Belson, and N. Tamagawa: AIP Conf. Proc., 1973, vol. 10, pp. 749-53.CrossRefGoogle Scholar
  2. 2.
    K.H.J. Buschow: Rep. Prog. Phys., 1977, vol. 40, pp. 1179-1256.CrossRefGoogle Scholar
  3. 3.
    N.C. Koon, C.M. Williams, and B.N. Das: J. Magn. Magn. Mater. 1991, vol. 100, pp. 173-85.CrossRefGoogle Scholar
  4. 4.
    J.D. Verhoeven, E.D. Gibson, O.D. McMasters, and H.H. Baker: Metall. Trans. A, 1987, vol. 18, pp. 223-31.CrossRefGoogle Scholar
  5. 5.
    J.D. Snodgrass and O.D. McMaster: J. Alloys Compd., 1997, vol. 258, pp. 24-9.CrossRefGoogle Scholar
  6. 6.
    M. Palit, S. Pandian, R. Balamuralikrishnan, A.K. Singh, N. Das, V. Chandrasekharan, and G. Markandeyulu: J. Appl. Phys., 2006, vol. 100, pp. 074913-1-5.CrossRefGoogle Scholar
  7. 7.
    J. Chengchang, L. Jianguo, M. Weizeng, and Z. Yaohe: J. Alloys Compd., 2002, vol. 333, pp. 291-5.CrossRefGoogle Scholar
  8. 8.
    Y. Zhao, C. Jiang, H. Zhang, and H. Xu: J. Alloys Compd., 2003, vol. 354, pp. 263-8.CrossRefGoogle Scholar
  9. 9.
    M. Palit, J.A. Chelvane, S. Pandian, N. Das, and V. Chandrasekaran: Scripta Mater., 2008, vol. 58, pp. 819-21.CrossRefGoogle Scholar
  10. 10.
    M. Palit, J.A. Chelvane, H. Basumatary, S. Banumathy, A.K. Singh, S. Pandian, and V. Chandrasekaran: Intermetallics, 2010, vol. 18, pp. 1027-32.CrossRefGoogle Scholar
  11. 11.
    W. Mei, T. Okane, T. Umeda, and S. Zhou: J. Alloys Compd., 1997, vol. 248, pp. 151-8.CrossRefGoogle Scholar
  12. 12.
    J.D. Verhoeven, E.D. Gibson, O.D. McMasters, and J.E. Ostenson: Metall. Trans. A, 1990, vol. 21, pp. 2249-55.CrossRefGoogle Scholar
  13. 13.
    M. Palit, S. Banumathy, A.K. Singh, S. Pandian, and K. Chattopadhyay: Intermetallics, 2011, vol. 19, pp. 357-68.CrossRefGoogle Scholar
  14. 14.
    W.J. Park, J.C. Kim, B.J. Ye, and Z.H. Lee, J. Cryst. Growth, 2000, vol. 212, pp. 283-90.CrossRefGoogle Scholar
  15. 15.
    D. Kang, J. Liu, C. Jiang, and H. Xu: Cryst. Growth Des., 2016. DOI: 10.1021/acs.cgd.5b00096.
  16. 16.
    G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan: Appl. Phys. Lett., 1995, vol. 67, pp. 2005-7.CrossRefGoogle Scholar
  17. 17.
    W. Löser, M. Leonhardt, H.G. Lindenkreuz, and B. Arnold: Mater. Sci. Eng. A, 2004, vol. 375, pp. 534-9.CrossRefGoogle Scholar
  18. 18.
    M. Takeyama, Y. Yamamoto, H. Morishima, K. Koike, S.Y. Chang, and T. Matsuo: Mater. Sci. Eng. A, 2002, vol. 329, pp. 7-12.CrossRefGoogle Scholar
  19. 19.
    M. Leonhardt, W. Löser, and H.G. Lindenkreuz: Acta Mater., 2002, vol. 50, pp. 725-34.CrossRefGoogle Scholar
  20. 20.
    J. Strohmenger, T. Volkmann, J. Gao, and D.M. Herlach: Mater. Sci. Eng. A, 2004, vol. 375, pp. 561-4.CrossRefGoogle Scholar
  21. 21.
    G. Phanikumar, K. Biswas, O. Funke, D. Holland-Moritz, D.M. Herlach, and K. Chattopadhyay: Acta Mater., 2005, vol. 53, pp. 3591-3600.CrossRefGoogle Scholar
  22. 22.
    R. Trivedi: Scripta Mater., 2005, vol. 53, pp. 47-52.CrossRefGoogle Scholar
  23. 23.
    O. Hunziker, M. Vandyoussefi, and W. Kurz: Acta Mater., 1998, vol. 46, pp. 6325-36.CrossRefGoogle Scholar
  24. 24.
    S. Dobler, T.S. Lo, M. Plapp, A. Karma, and W. Kurz: Acta Mater., 2004, vol. 52, pp. 2795-2808.CrossRefGoogle Scholar
  25. 25.
    T.S. Lo, S. Dobler, M. Plapp, A. Karma, and W. Kurz: Acta Mater., 2003, vol. 51, pp. 599-611.CrossRefGoogle Scholar
  26. 26.
    R. Trivedi and J.H. Shin: Mater. Sci. Eng. A, 2005, vol. 413, pp. 288-95.CrossRefGoogle Scholar
  27. 27.
    J.S. Park and R. Trivedi: J. Cryst. Growth, 1998, vol. 187, pp. 511-5.CrossRefGoogle Scholar
  28. 28.
    P. Magnin and W. Kurz: Acta Metallurgica, 1987, vol. 35, pp. 111-28.Google Scholar
  29. 29.
    M. Gündüz, H. Kaya, E. Çadırlı, and A. Özmen: Mater. Sci. Eng. A, 2004, vol. 369, pp. 215-29.CrossRefGoogle Scholar
  30. 30.
    H. Kaya, E. Çadırlı, M. Gündüz, and A. Ülgen: J. Mater. Eng. Perform., 2003, vol. 12, pp. 544-51.CrossRefGoogle Scholar
  31. 31.
    J.A. Chelvane, S. Banumathy, M. Palit, H. Basumatary, A.K. Singh, and S. Pandian: J. Alloys Compd., 2010, vol. 507, pp. 162-6.CrossRefGoogle Scholar
  32. 32.
    M.G. Ardakani, N. D’Souza, A. Wagner, B.A. Shollock, and M. McLean: in Superalloys 2000, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, and T.M. Pollock, eds., TMS, Warrendale, PA, 2000, pp. 219–28.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Mithun Palit
    • 1
  • S. Banumathy
    • 2
  • A. K. Singh
    • 2
  • S. Pandian
    • 1
  • Kamanio Chattopadhyay
    • 3
  1. 1.Advanced Magnetics GroupDefense Metallurgical Research LaboratoryHyderabadIndia
  2. 2.Structural Failure Analysis GroupDefense Metallurgical Research LaboratoryHyderabadIndia
  3. 3.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations