Metallurgical and Materials Transactions A

, Volume 47, Issue 4, pp 1544–1553 | Cite as

Precipitation Behavior During Aging in α Phase Titanium Supersaturated with Cu

  • Masatoshi MitsuharaEmail author
  • Tomoya Masuda
  • Minoru Nishida
  • Tomonori Kunieda
  • Hideki Fujii


Age hardening of Ti-2.3 mass pct Cu (Ti-2.3Cu) at 673 K to 873 K (400 °C to 600 °C) after solution treatment at 1063 K (790 °C) was observed. The relationship between precipitates formed during aging and changes in hardness was investigated. During aging at 673 K (400 °C), the hardness increased rapidly up to 200 hours, and subsequently increased more slowly up to 1000 hours. At 873 K (600 °C), the hardness began to decrease immediately. Transmission electron microscopy showed that fine disk-shaped precipitates of 20 to 40 nm in diameter grew in the α phase. It is concluded that these precipitates interacted with dislocations and increased the hardness. At 873 K (600 °C), precipitates of 1 µm in length and Ti2Cu particles of 200 nm in length were observed. The decrease in hardness may have resulted from the precipitate formation decreasing the concentration of Cu in the α phase. Bright/dark contrast of the three atomic layers and small atomic shift of the hcp structure were observed in the atomic resolution imaging of the precipitates. This suggests that the precipitates are not just Cu-enriched zones and have structures with similar periodicity to the Ti2Cu phase, which is thermally stable at those aging temperatures.


Habit Plane Select Area Electron Diffraction Pattern Diffraction Spot Electron Energy Loss Spectroscopy Fine Precipitate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Fujii, and T. Maeda: Nippon Steel & Sumitomo Metal Technical Report, 2014, No. 106, pp. 16–21.Google Scholar
  2. 2.
    S. Fox and K.-O. Yu: Ti-2011, Proc. 12th World Conf. Titan., China National Convention Center, Beijing, 2012, pp. 65–70.Google Scholar
  3. 3.
    E. Herderick: Materials Science and Technology (MS&T) 2011, ASM International, 2011, pp. 1413–25.Google Scholar
  4. 4.
    T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma: Science, 2003, vol. 300, pp. 464–67.CrossRefGoogle Scholar
  5. 5.
    M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee: J. Sch. Sci. Res. Innov, 2014, vol. 8, pp. 788–93.Google Scholar
  6. 6.
    Y. Kawabe, and S. Muneki: ISIJ Int., 1991, vol. 31, pp. 785–91.CrossRefGoogle Scholar
  7. 7.
    T. Furuhara, T. Maki, and T. Makino: J. Mater. Process. Technol., 2001, vol. 117, pp. 318–23.CrossRefGoogle Scholar
  8. 8.
    O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, and S. Fox: J. Alloys Compd., 2008, vol. 457, pp. 296–309.CrossRefGoogle Scholar
  9. 9.
    G. Lütjering, and S. Weissmann: Metall. Trans., 1970, vol. 1, pp. 1641–49.CrossRefGoogle Scholar
  10. 10.
    M. Takahashi, M. Kikuchi, Y. Takada, and O. Okuno: Dent. Mater. J., 2002, vol. 21, pp. 270–80.CrossRefGoogle Scholar
  11. 11.
    X. Yao, Q.Y. Sun, L. Xiao, and J. Sun: J. Alloys Compd., 2009, vol. 484, pp. 196–202.CrossRefGoogle Scholar
  12. 12.
    Z.Y. Song, Q.Y. Sun, L. Xiao, J. Sun, L.C. Zhang, X.D. Guo, and X.D. Li: Mater. Sci. Eng. A, 2013, vol. 568, pp. 118–22.CrossRefGoogle Scholar
  13. 13.
    F.F. Cardoso, A. Cremasco, R.J. Contieri, E.S.N. Lopes, C.R.M. Afonso, and R. Caram: Mater. Des., 2011, vol. 32, pp. 4608–13.CrossRefGoogle Scholar
  14. 14.
    J.C. Williams, R. Taggart, and D.H. Polonis: Metall. Trans., 1971, vol. 2, pp. 1139–48.CrossRefGoogle Scholar
  15. 15.
    S. Nourbakhsh, and J.J. Crowther: Acta Metall., 1985, vol. 33, pp. 1187–93.CrossRefGoogle Scholar
  16. 16.
    P.A. Blenkinsop, and R.E. Goosey: The Science, Technology and Application of Titanium, Pergamon Press, Oxford, 1970, pp. 783–93.CrossRefGoogle Scholar
  17. 17.
    T. Nishimura, Y. Sugimura, and S. Ohtani: Proc. Titan. Sci. Technol., Plenum Press, NY, 1973, pp. 1853–67.Google Scholar
  18. 18.
    J. Kiese and L. Wagner: Titanium’95: Science and Technology, Proc. Eighth World Conf. Titan., Institute of Materials, London, 1996, 1019–25.Google Scholar
  19. 19.
    H.P. Ng, P. Nandwana, A. Devaraj, M. Semblanet, S. Nag, P.N.H. Nakashima, S. Meher, C.J. Bettles, M.A. Gibson, H.L. Fraser, B.C. Muddle, and R. Banerjee: Acta Mater. 2015, vol. 84, pp. 457–71.CrossRefGoogle Scholar
  20. 20.
    H. Okamoto: Phase Diagrams for Binary Alloys, ASM International, Materials Park, 2000.Google Scholar
  21. 21.
    K.H.J. Buschow: Acta Metall., 1983, vol. 31, pp. 155–60.CrossRefGoogle Scholar
  22. 22.
    R.F. Egerton: Electron EnergyLoss Spectroscopy in the Electron Microscope, 3rd ed., Springer, New York, 2011.CrossRefGoogle Scholar
  23. 23.
    R.I. Jaffee: Prog. Met. Phys., 1958, vol. 7, pp. 65–163.CrossRefGoogle Scholar
  24. 24.
    S.J. Pennycook and P. D. Nellist: Scanning Transmission Electron Microscopy, Springer, New York, 2011.CrossRefGoogle Scholar
  25. 25.
    M. Karlik, B. Jouffrey, and S. Belliot, Acta Mater., 1998, vol. 46, pp. 1817–25.CrossRefGoogle Scholar
  26. 26.
    K. Oh-ishi, R. Watanabe, C. L. Mendis, and K. Hono: Mater. Sci. Eng. A, 2009, vol. 526, pp. 177–84.CrossRefGoogle Scholar
  27. 27.
    S.K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo: Mater. Lett., 2005, vol. 59, pp. 629–32.CrossRefGoogle Scholar
  28. 28.
    R. Monzen, T. Seo, T. Sakai, and C. Watanabe: Mater. Trans., 2006, vol. 47, pp. 2925–34.CrossRefGoogle Scholar
  29. 29.
    K. Ishizuka: Ultramicroscopy, 2002, vol. 90, pp. 71–83.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Masatoshi Mitsuhara
    • 1
    Email author
  • Tomoya Masuda
    • 2
  • Minoru Nishida
    • 1
  • Tomonori Kunieda
    • 3
  • Hideki Fujii
    • 4
  1. 1.Department of Engineering Sciences for Electronics and MaterialsKyushu UniversityFukuokaJapan
  2. 2.Interdisciplinary Graduate School of Science and EngineeringKyushu UniversityFukuokaJapan
  3. 3.Nippon Steel & Sumitomo Metal CorporationHikariJapan
  4. 4.Nippon Steel & Sumitomo Metal CorporationFuttsuJapan

Personalised recommendations