Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 4, pp 1842–1853 | Cite as

Microstructures and Tensile Mechanical Properties of Titanium Rods Made by Powder Compact Extrusion of a Titanium Hydride Powder

  • Yifeng Zheng
  • Xun Yao
  • Jiamiao Liang
  • Deliang Zhang
Article

Abstract

Nearly fully dense titanium with good mechanical properties was fabricated rapidly by induction heating, holding, and hot extrusion of the TiH2 powder compacts. The dehydrogenation and consolidation processes took less than 15 minutes in total. The microstructures, contents of interstitial elements (H, O), tensile mechanical properties, and fracture behaviors of titanium samples made with different holding and extrusion temperatures [1273 K, 1373 K, and 1473 K (1000 °C, 1100 °C, and 1200 °C)] were investigated. The results showed that the hydrogen content in the extruded rods was around 0.09 wt pct when the holding and extrusion temperature was 1373 K or 1473 K (1100 °C or 1200 °C), with almost all of the TiH2 phase being transformed into Ti phase during the heating, holding, and extrusion process steps. The extruded Ti samples had a lamellar structure consisting of fine α lamellae with random orientations in different lamellar colonies and the relative density of all the extruded samples exceeded 99.5 pct. The residual TiH2 phase can reduce the ductility of extruded rods. The sample extruded at 1373 K (1100 °C) has the best elongation to fracture of 21.0 pct, and its average yield strength and ultimate tensile strength reached 536.8 and 691.8 MPa, respectively.

Keywords

Hydrogen Content Tensile Ductility Titanium Atom Extrusion Temperature Tensile Test Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Funding from the National Natural Science Foundation of China (Project Number: 51271115) and the Ministry of Science and Technology through a 973 project on the scientific basis of fabrication of advanced metal matrix composites (No. 2012CB619600) is gratefully acknowledged.

References

  1. 1.
    [1] R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213, pp. 103-114.CrossRefGoogle Scholar
  2. 2.
    [2] R.H. Hu and J.K. Lim: Mater. Des., 2010, vol. 31, pp. 2670-2675.CrossRefGoogle Scholar
  3. 3.
    [3] V.M. Anokhin, O.M. Ivasishin, and A.N. Petrunko: Mater. Sci. Eng. A, 1998, vol. 243, pp. 269-272.CrossRefGoogle Scholar
  4. 4.
    [4] O.M. Ivasishin, V.M. Anokhin, and D.G. Savvakin: Key Eng. Mater., 2000, vol. 188, pp. 55-62.CrossRefGoogle Scholar
  5. 5.
    [5] I.M. Robertson and G.B. Schaffer: Powder Metallurgy., 2010, vol. 53, pp. 12-19.CrossRefGoogle Scholar
  6. 6.
    [6] Z. Yong, M.S. Zheng, H. Hashimoto, and C. Lin: J. Alloys Compd., 2009, vol. 468, pp. 217-221.CrossRefGoogle Scholar
  7. 7.
    [7] N. Peillon, J.B. Fruhauf, S. Gourdet, J. Feraille, S. Saunier, and C. Desrayaud: J. Alloys Compd., 2015, vol. 619, pp. 157-164.CrossRefGoogle Scholar
  8. 8.
    [8] Y.H. Li, R.B. Chen, G.X. Qi, Z.T. Wang, and Z.Y. Deng: J. Alloys Compd., 2009, vol. 485, pp. 215-218.CrossRefGoogle Scholar
  9. 9.
    [9] B. Bertheville, M. Neudenberger, and J.E. Bidaux: Mater. Sci. Eng. A, 2004, vol.384, pp. 143-150.CrossRefGoogle Scholar
  10. 10.
    [10] J.L. Bobet, C. Even, and J.M. Quenisset: J. Alloys Compd., 2003, vol. 348, pp. 247-251.CrossRefGoogle Scholar
  11. 11.
    [11] C.I. Pascu, O. Gingu, P. Rotaru, I. Vida-Simiti, A. Harabor, and N. Lupu: J Therm Anal Calorim., 2013, vol. 113, pp. 849-857.CrossRefGoogle Scholar
  12. 12.
    [12] N.R. Kim, I.Y. Ko, S.W. Cho, W. Kim and I.J. Shon: Res Chem Intermed., 2011, vol. 37, pp. 11-17.CrossRefGoogle Scholar
  13. 13.
    [13] S.D. Luo, Y.F. Yang, G.B. Schaffer, and M. Qian: Scripta Materialia., 2013, vol. 69, pp. 69-72.CrossRefGoogle Scholar
  14. 14.
    [14] G. Chen, P. Cao, and N. Edmonds: Mater. Sci. Eng. A, 2013, vol. 582, pp. 117-125.CrossRefGoogle Scholar
  15. 15.
    [15] O.M. Ivasishin and D.G. Savvakin: Key Eng. Mater., 2010, vol. 436, pp. 113-121.CrossRefGoogle Scholar
  16. 16.
    [16] V. Bhosle, E.G. Baruraj, M. Miranova, and K. Salama: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2793-2799.CrossRefGoogle Scholar
  17. 17.
    [17] Y.F. Yang and D.K. Mu: Powder Technol., 2013, vol. 249, pp. 208-211.CrossRefGoogle Scholar
  18. 18.
    [18] F. Prat, M. Grange, J. Besson, and E. Andrieu: Metall. Mater. Trans. A. 1998, vol. 29, pp. 1643-1651.CrossRefGoogle Scholar
  19. 19.
    [19] A.R. Traiano: Trans. ASM., 1960, vol. 52, pp. 54-80.Google Scholar
  20. 20.
    [20] K.S. Chan and Y.W. Kim: Acta. Metall. Mater., 1995, vol. 43, pp. 439-451.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Yifeng Zheng
    • 1
  • Xun Yao
    • 1
  • Jiamiao Liang
    • 1
  • Deliang Zhang
    • 1
  1. 1.State Key Laboratory for Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations