Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 3, pp 1367–1377 | Cite as

Environmentally Assisted Cracking of Alloy 7050-T7451 Exposed to Aqueous Chloride Solutions

  • Reinhold BraunEmail author
Article

Abstract

The stress corrosion cracking (SCC) behavior of 7050-T7451 plate material was investigated in short-transverse direction performing constant load and constant extension rate tests. Smooth and notched tensile specimens were permanently immersed in substitute ocean water and in an aqueous solution of 0.6 M NaCl + 0.06 M (NH4)2SO4. Alloy 7050-T7451 exhibited high SCC resistance in both synthetic environments. However, conducting cyclic loading tests, environment-induced cracking was observed. Applying a sawtooth waveform, notched tensile specimens were strained under constant load amplitude conditions at constant displacement rates ranging from 2 × 10−6 to 2 × 10−4 mms−1. The stress ratio R = σ min/σ max was 0.1 with maximum stresses of 300 and 400 MPa. When cyclically loaded in substitute ocean water, notched specimens failed predominantly by transgranular environment-induced cracking. Striations were observed on the cleavage-like facets. The number of cycles-to-failure decreased with decreasing displacement rate. A slope of 0.5 was obtained by fitting the logarithmic plot of number of cycles-to-failure vs nominal loading frequency, indicating a hydrogen embrittlement mechanism controlled by diffusion.

Keywords

Stress Corrosion Crack Slow Strain Rate Testing Stress Corrosion Crack Resistance Stress Corrosion Crack Susceptibility Constant Load Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.O. Sprowls and R.H. Brown: in Fundamental Aspects of Stress Corrosion Cracking, R.W. Staehle, ed., National Association of Corrosion Engineers, Houston, 1969, pp. 466–506.Google Scholar
  2. 2.
    M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–51.CrossRefGoogle Scholar
  3. 3.
    T.J. Summerson and D.O. Sprowls: in Aluminum Alloys - Their Physical and Mechanical Properties, E.A. Starke and T.H. Sanders, eds., EMAS, Cradley Heath, 1986, pp. 1575–662.Google Scholar
  4. 4.
    N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., National Association of Corrosion Engineers, Houston, 1990, pp. 311–45.Google Scholar
  5. 5.
    W.H. Hunt and J.T. Staley: in Light-Weight Alloys for Aerospace Applications, E.W. Lee, E.H. Chia, and N.J. Kim, eds., The Minerals, Metals & Materials Society, Warrendale, 1989, pp. 111–20.Google Scholar
  6. 6.
    R.J. Bucci, C.J. Warren, and E.A. Starke: Journal of Aircraft, 2000, vol. 37, pp. 122–29.CrossRefGoogle Scholar
  7. 7.
    E.A. Starke and J.T. Staley: Prog. Aerospace Sci., 1996, vol. 32, pp. 131–72.CrossRefGoogle Scholar
  8. 8.
    N.J.H. Holroyd, A.K. Vasudevan, and L. Christodoulou: in Aluminum Alloys—Contemporary Research and Applications, A.K. Vasudevan and R.D. Doherty, eds., Treatise on Materials Science and Technology, Vol. 31, Academic Press, Boston, 1989, pp. 463–83.Google Scholar
  9. 9.
    M.C. Reboul, T. Magnin, and T.J. Warner: in Aluminium Alloys – Their Physical and Mechanical Properties (ICAA3), Vol. II, L. Arnberg, O. Lohne, E. Nes, and N. Ryum, eds., NTH and SINTEF, Trondheim, 1992, pp. 453–60.Google Scholar
  10. 10.
    W. Gruhl: Z. Metallkde., 1984, vol. 75, pp. 819–26.Google Scholar
  11. 11.
    T.D. Burleigh: Corrosion, 1991, vol. 47, pp. 89–98.CrossRefGoogle Scholar
  12. 12.
    M.C. Reboul and B. Baroux: Mater. Corros., 2010, vol. 61, No. 9999.Google Scholar
  13. 13.
    D. Najjar, T. Magnin, and T.J. Warner: Mater. Sci. Eng. A, 1997, vol. 238, pp. 293–302.CrossRefGoogle Scholar
  14. 14.
    R. Braun: Materialwiss. Werkstofftech., 2007, vol. 38, pp. 674–89.CrossRefGoogle Scholar
  15. 15.
    R. Braun: Int. J. Fatigue, 2008, vol. 30, pp. 1827–37.CrossRefGoogle Scholar
  16. 16.
    R. Braun: in Effects of Hydrogen on Materials, B. Somerday, P. Sofronis, and R. Jones, eds., ASM International, Materials Park, 2009, pp. 251–58.Google Scholar
  17. 17.
    R.H. Jones and R.E. Ricker: in Stress-Corrosion Cracking, R.H. Jones, ed., ASM International, Materials Park, 1992, pp. 1–40.Google Scholar
  18. 18.
    D.O. Sprowls: in Stress-Corrosion Cracking, R.H. Jones, ed., ASM International, Materials Park, 1992, pp. 363–415.Google Scholar
  19. 19.
    P.S. Pao, R.A. Bayles, S.J. Gill, D.A. Meyn, and G.R. Yoder: in Parkins Symposium on Fundamental Aspects of Stress Corrosion Cracking, S.M. Bruemmer, E.I. Meletis, R.H. Jones, W.W. Gerberich, F.P. Ford, and R.W. Staehle, eds., TMS, Warrendale, 1992, pp. 245–54.Google Scholar
  20. 20.
    P.S. Pao, S.J. Gill, R.A. Bayles, and G.R. Yoder: Scripta Met., 1991, vol. 25, pp. 2085–89.CrossRefGoogle Scholar
  21. 21.
    R.N. Parkins and B.S. Greenwell: Metal Sci., 1977, vol. 11, pp. 405–13.CrossRefGoogle Scholar
  22. 22.
    D. Wu, H.S. Ahluwalia, H. Cai, J.T. Evans, and R.N. Parkins: Corros. Sci., 1991, vol. 32, pp. 769–94.CrossRefGoogle Scholar
  23. 23.
    A.D.B. Gingell and J.E. King: Acta Mater., 1997, vol. 45, pp. 3855–70.CrossRefGoogle Scholar
  24. 24.
    Z.M. Gasem and R.P. Gangloff: Mater. Sci. Forum, 2000, vol. 331-337, pp. 1479–88.CrossRefGoogle Scholar
  25. 25.
    S.B. Lyon, G.E. Thompson, and J.B. Johnson: in New Methods for Corrosion Testing of Aluminum Alloys, ASTM STP 1134, V.S. Agarwala and G.M. Ugiansky, eds., American Society for Testing and Materials, Philadelphia, 1992, pp. 20–31.Google Scholar
  26. 26.
    T.E. Graedel: J. Electrochem. Soc., 1989, vol. 136, pp. 204C-12C.CrossRefGoogle Scholar
  27. 27.
    A.H. Le, B.F. Brown, and R.T. Foley: Corrosion, 1980, vol. 36, pp. 673–79.CrossRefGoogle Scholar
  28. 28.
    R. Braun: Mater. Corros., 2000, vol. 51, pp. 607–15.CrossRefGoogle Scholar
  29. 29.
    R. Braun: Mater. Corros., 2003, vol. 54, pp. 157–62.CrossRefGoogle Scholar
  30. 30.
    R. Braun: Mater. Corros., 2004, vol. 55, pp. 241–48.CrossRefGoogle Scholar
  31. 31.
    R. Braun and H. Buhl: in Advanced Aerospace Materials, H. Buhl, ed., Springer, Berlin, 1992, pp. 296–307.Google Scholar
  32. 32.
    C.R. Hutchinson, F. de Geuser, Y. Chen, and A. Deschamps: Acta Mater., 2014, vol. 74, pp. 96–109.CrossRefGoogle Scholar
  33. 33.
    R.E. Stoltz and R.M. Pelloux: Corrosion, 1973, vol. 29, pp. 13–7.CrossRefGoogle Scholar
  34. 34.
    M. Khobaib, C.T. Lynch, and F.W. Vahldiek: Corrosion, 1981, vol. 36, pp. 285–92.CrossRefGoogle Scholar
  35. 35.
    R.J. Jacko and D.J. Duquette: Metall. Trans. A, 1977, vol. 8A, pp. 1821–27.CrossRefGoogle Scholar
  36. 36.
    R.E. Stoltz and R.M. Pelloux: Metall. Trans. A, 1972, vol. 3A, pp. 2433–41.CrossRefGoogle Scholar
  37. 37.
    J.Ruiz and M. Elices: Corros. Sci., 1996, vol. 38, pp. 1815–37.CrossRefGoogle Scholar
  38. 38.
    M. Puiggali, A. Zielinsky, J.M. Olive, E. Renauld, D. Desjardins, and M. Cid: Corros. Sci., 1998, vol. 40, pp. 805–19.CrossRefGoogle Scholar
  39. 39.
    R. Braun: Mater. Corros., 1993, vol. 44, pp. 73–82.CrossRefGoogle Scholar
  40. 40.
    R. Braun: Mater. Corros., 1994, vol. 45, pp. 369–77.CrossRefGoogle Scholar
  41. 41.
    R. Braun: Corrosion, 1997, vol. 53, pp. 467-74.CrossRefGoogle Scholar
  42. 42.
    E.N. Pugh: Corrosion, 1985, vol. 41, pp. 517–26.CrossRefGoogle Scholar
  43. 43.
    M.J. Kaufman and J.L. Fink: Acta Metall., 1988, vol. 36, pp. 2213–28.CrossRefGoogle Scholar
  44. 44.
    S.P. Lynch: Acta Metall., 1988, vol. 36, pp. 2639–61.CrossRefGoogle Scholar
  45. 45.
    T. Magnin, A. Chambreuil, and J.P. Chateau: Int. J. Fracture, 1996, vol. 79, pp. 147–63.CrossRefGoogle Scholar
  46. 46.
    J.L. Nelson and E.N. Pugh: Metall. Trans. A, 1975, vol. 6A, pp. 1459–60.CrossRefGoogle Scholar
  47. 47.
    R.C. Dorward and K.R. Hasse: Corros. Sci., 1982, vol. 22, pp. 251–57.CrossRefGoogle Scholar
  48. 48.
    R. Braun: Mater. Corros., 1994, vol. 45, pp. 255–63.CrossRefGoogle Scholar
  49. 49.
    R. Braun: Mater. Corros., 2005, vol. 56, pp. 159–65.CrossRefGoogle Scholar
  50. 50.
    R. Braun: Mater. Charact., 2006, vol. 56, pp. 85–95.CrossRefGoogle Scholar
  51. 51.
    R. Braun: in Corrosion-Deformation Interactions CDI ’96, T. Magnin, ed., The Institute of Materials, London, 1997, pp. 140–47.Google Scholar
  52. 52.
    R. Braun: in Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, N.R. Moody, A.W. Thompson, R.E. Ricker, G.W. Was, and R.H. Jones, eds., TMS, Warrendale, 2003, pp. 883–92.Google Scholar
  53. 53.
    S. Maitra and G.C. English: Metall. Trans. A, 1982, vol. 13A, pp. 161-6.CrossRefGoogle Scholar
  54. 54.
    J.F. McIntyre and T.S. Dow: Corrosion, 1992, vol. 48, pp. 309–19.CrossRefGoogle Scholar
  55. 55.
    K. Sieradzki and R.C. Newman: Philos. Mag. A, 1985, vol. 51, pp. 95–132.CrossRefGoogle Scholar
  56. 56.
    R.A. Oriani: Corrosion, 1987, vol. 43, pp. 390-97.CrossRefGoogle Scholar
  57. 57.
    R.A. Oriani: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., National Association of Corrosion Engineers, Houston, 1990, pp. 439–48.Google Scholar
  58. 58.
    H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.CrossRefGoogle Scholar
  59. 59.
    H.K. Birnbaum, I.M. Robertson, P. Sofronis, and D. Teter: in Corrosion-Deformation Interactions CDI ’96, T. Magnin, ed., The Institute of Materials, London, 1997, pp. 172–95.Google Scholar
  60. 60.
    S.P. Lynch: in Corrosion-Deformation Interactions CDI ’96, T. Magnin, ed., The Institute of Materials, London, 1997, pp. 206–19.Google Scholar
  61. 61.
    D. Delafosse and T.Magnin: Eng. Fract. Mech., 2001, vol. 68, pp. 693–729.CrossRefGoogle Scholar
  62. 62.
    P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 1999, vol. 47, pp. 2991–98.CrossRefGoogle Scholar
  63. 63.
    D. Nguyen, A.W. Thompson, and I.M. Bernstein: Acta Metall., 1987, vol. 35, pp. 2417–25.CrossRefGoogle Scholar
  64. 64.
    J. Albrecht, I.M. Bernstein, and A.W. Thompson: Metall. Trans. A, 1982, vol. 13A, pp. 811–20.CrossRefGoogle Scholar
  65. 65.
    K. Sadananda and A.K. Vasudevan: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 279–95.CrossRefGoogle Scholar
  66. 66.
    N.J.H. Holroyd and D. Hardie: Corros. Sci., 1983, vol. 23, pp. 527–46.CrossRefGoogle Scholar
  67. 67.
    R.E. Ricker and D.J. Duquette: Metall. Trans. A, 1988, vol. 19A, pp. 1775-83.CrossRefGoogle Scholar
  68. 68.
    C.-K. Lin and S.-T. Yang: Eng. Fract. Mech., 1998, vol. 59, pp. 779-95.CrossRefGoogle Scholar
  69. 69.
    E.U. Lee, A.K. Vasudevan, and G. Glinka: Int. J. Fatigue, 2009, vol. 31, pp. 1938-42.CrossRefGoogle Scholar
  70. 70.
    P. Martin, J.I. Dickson, and J.-P. Bailon: Mater. Sci. Eng., 1985, vol. 69, pp. L9-L13.CrossRefGoogle Scholar
  71. 71.
    R.P. Gangloff: in Comprehensive Structural Integrity, Vol. 6, I. Milne, R.O. Ritchie and B. Karihaloo, eds., Elsevier Science, New York, 2003, pp. 31–101.Google Scholar
  72. 72.
    Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1449–65.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Institute of Materials ResearchDLR – German Aerospace CenterKölnGermany

Personalised recommendations