Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 3, pp 1322–1330 | Cite as

β-Ti Grain Refinement Via α-Precipitation

  • Alireza Ghaderi
  • Peter D. Hodgson
  • Matthew R. Barnett
Article

Abstract

The present work explores the impact of α precipitates on β recrystallization following hot deformation of Ti-5Al-5Mo-5V-3Cr with grains larger than 1 mm. A single hot rolling pass of 36 pct reduction was conducted on an aged microstructure containing α precipitates at a temperature well below the β transus temperature. After annealing, a uniformly recrystallized structure with a grain size of ~100 µm is formed. The prior β grain boundaries can be readily identified and it is seen that the primary β grains have been replaced by grains displaying a spread of correlated misorientation angles extending up to the highest allowable values. The annealing comprises two stages. The first stage involves normal β subgrain growth limited by the Zener pinning force of the unstable α precipitates. The second stage corresponds to the onset of β recrystallization at the point where the Zener pinning force drops due to dissolution of the α precipitates. This leads to a uniform distribution of site saturated recrystallization nuclei.

Keywords

Recrystallization Misorientation Angle Subgrain Size Cube Orientation Thin Black Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Australian Research Council through the Centre of Excellence for Design in Light Metals, and use of the Deakin Advanced Characterisation Facility. Also, thanks to Mr Lynton Leigh for his assistance in the heat treatment and rolling process.

References

  1. 1.
    R.R. Boyer, and R.D. Briggs: J. Mater. Eng. Perform., 2005, vol. 14, pp. 681-685.CrossRefGoogle Scholar
  2. 2.
    G. Lütjering and J.C. Williams: Titanium. Engineering Materials and Processes, 2nd ed, Springer, New York, 2007.Google Scholar
  3. 3.
    M.J Donachie: Titanium, A technical Guide, 2nd ed, ASM International, 2007.Google Scholar
  4. 4.
    I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46-65.CrossRefGoogle Scholar
  5. 5.
    Y. Kawabe and S. Muneki: Beta Titanium Alloys in the 1990’s, TMS, Warrendale, 1993.Google Scholar
  6. 6.
    K. Le Biavant, S. Pommier, and C. Prioul: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 527-545.CrossRefGoogle Scholar
  7. 7.
    F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2008, vol. 56, pp. 3951-3962.CrossRefGoogle Scholar
  8. 8.
    A.P. Woodfield, M.D. Gorman, R.R. Corderman, I.A. Sutliff, and B. Yamrom: Titanium ‘95 Science and Technology, Proceedings of the Eighth World Conference on Titanium 1995, The Institute of Materials, Birmingham, 1996.Google Scholar
  9. 9.
    L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi, and P. Bocher: Acta Mater., 2008, vol. 56, pp. 4298-4308.CrossRefGoogle Scholar
  10. 10.
    D.G. Leo Prakash, P. Honniball, D. Rugg, P.J. Withers, J. Quinta da Fonseca, and M. Preuss: Acta Mater., 2013, vol. 61, pp. 3200-3213.CrossRefGoogle Scholar
  11. 11.
    S.L. Semiatin, S.V. Seetharaman, and I. Weiss: JOM, 1997, vol. 49, pp. 33-39.CrossRefGoogle Scholar
  12. 12.
    H.M. Flower: Mater. Sci. Tech., 1990, vol. 6, pp. 1082-1092.CrossRefGoogle Scholar
  13. 13.
    D. Banerjee, A. Pilchak, and J.C. Williams: Mater. Sci. Forum, 2012, vol. 710, pp. 66-84.CrossRefGoogle Scholar
  14. 14.
    D. Banerjee, and J.C. Williams: Acta Mater, 2013, vol. 61, pp. 844-879.CrossRefGoogle Scholar
  15. 15.
    T. Furuhara, Y. Toji, H. Abe, and T. Maki: Mater. Sci. Forum, 2003, vol. 426-432, pp. 655-660.CrossRefGoogle Scholar
  16. 16.
    F. Montheillet, D. Dajno, N. Come, E. Gautier, A. Simon, P. Audrerie, A.-M. Chaze, and C. Levaillant: Titanium ‘92: Science and Technology, TMS, Warrendale, 1992.Google Scholar
  17. 17.
    T. Furuhara, B. Poorganji, H. Abe, and T. Maki: JOM, 2007, vol. 59, pp. 64-67.CrossRefGoogle Scholar
  18. 18.
    V.V. Tetyukhin, I.V. Levin, and N.I. Levina: US Patent, No. US 2013/0233455 A1, 12 Sept. 2013.Google Scholar
  19. 19.
    F.J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, 2nd ed, Elsevier Science, New York, 2004.Google Scholar
  20. 20.
    J.C. Fanning: J. Mater. Eng. Perform., 2005, vol. 14, pp. 788-791.CrossRefGoogle Scholar
  21. 21.
    S.L. Nyakana, J.C. Fanning, and R.R. Boyer: J. Mater. Eng. Perform., 2005, vol. 14, pp. 799-811.CrossRefGoogle Scholar
  22. 22.
    N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 369-377.CrossRefGoogle Scholar
  23. 23.
    M.G. Glavicic, P.A. Kobryn, F. Spadafora, and S.L. Semiatin: Mat. Sci. Eng. A, 2003, vol. 346, pp. 8-18.CrossRefGoogle Scholar
  24. 24.
    M. Harper, R. Williams, G.B. Viswanathan, J. Tiley, R. Banerjee, D.J. Evans, and H.L. Fraser: Ti-2003, Science and Technology: Proceedings of the 10th World Conference on Titanium, Wiley-VCH, Hamburg, 2004.Google Scholar
  25. 25.
    S.K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee: Mater. Charact., 2013, vol. 81, pp. 37-48.CrossRefGoogle Scholar
  26. 26.
    S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, Acta Mater., 2009, vol. 57, pp. 2136-2147.CrossRefGoogle Scholar
  27. 27.
    E.E. Underwood: J. Microsc., 1969, vol. 89, no. 2, pp. 161-180.CrossRefGoogle Scholar
  28. 28.
    M. Dikovits, C. Poletti, and F. Warchomicka: Metall. Mater. Trans. A, 2013, vol. 45, pp. 1586-1596.CrossRefGoogle Scholar
  29. 29.
    I. Weiss, F.H. Froes, and D. Eylon: Metall. Trans., 1984, vol. 15, pp. 1493-1496.CrossRefGoogle Scholar
  30. 30.
    J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229-240.CrossRefGoogle Scholar
  31. 31.
    S. Kobayashi and S. Zaefferer: Intermetallics, 2006, vol. 14, pp. 1252-1256.CrossRefGoogle Scholar
  32. 32.
    P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913-924.CrossRefGoogle Scholar
  33. 33.
    B.R. Patterson and Y. Liu: Metall. Trans. A, 1992, vol. 23, pp. 2481-2482.CrossRefGoogle Scholar
  34. 34.
    R.T. DeHoff and F.N. Rhines: Trans. TMS-AIME, 1961, vol. 221, pp. 975-982.Google Scholar
  35. 35.
    N. Ryum, O. Hunderi, and E. Nes: Scr. Metall., 1983, vol. 17, pp. 1281-1283.CrossRefGoogle Scholar
  36. 36.
    F.J. Humphreys: Acta Mater., 1997, vol. 45, pp. 4231-4240.CrossRefGoogle Scholar
  37. 37.
    F.J. Humphreys: Acta Mater., 1997, vol. 45, pp. 5031-5039.CrossRefGoogle Scholar
  38. 38.
    D. Dunst, R. Dendievel, and H. Mecking: Mater. Sci. Forum, 1994, vol. 157-162, pp. 665-672.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Alireza Ghaderi
    • 1
  • Peter D. Hodgson
    • 1
  • Matthew R. Barnett
    • 1
  1. 1.Deakin UniversityGeelongAustralia

Personalised recommendations