Metallurgical and Materials Transactions A

, Volume 47, Issue 3, pp 1248–1260 | Cite as

Modeling and Characterization of Texture Evolution in Twist Extrusion

  • Marat I. Latypov
  • Myoung-Gyu Lee
  • Yan Beygelzimer
  • Denis Prilepo
  • Yuri Gusar
  • Hyoung Seop Kim


Twist extrusion (TE) is a severe plastic deformation method with a potential for commercialization. Deformation during the TE process is non-uniform and non-monotonic, which is expected to result in significant and non-trivial microstructural changes in metallic materials. In this study, texture evolution during TE of pre-textured copper was investigated. Experimental characterization of textures after various numbers of passes demonstrated that TE can be used for producing uniformly weak textures in pre-textured copper. Crystal plasticity simulations were found to run into the problem known as strain reversal texture. In particular, crystal plasticity simulations predicted the return of initial texture upon strain reversal in the first pass of TE, whereas the experimental texture was not reversed and had components related to simple shear. Grain refinement, imperfect strain reversal, and material asymmetry are proposed to be responsible for the occurrence of strain reversal texture in TE. Effects of the non-random initial texture on the microstructure and texture evolution are also discussed.


Pole Figure Simple Shear Equal Channel Angular Pressing Texture Evolution Initial Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. L.S. Toth for insightful comments on the manuscript. Dr. B.-C. Suh and Dr. Y. Jeong are also gratefully acknowledged for assistance with XRD measurements. The current research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014R1A2A1A10051322).


  1. 1.
    Y. Beygelzimer, D. Orlov, A. Korshunov, S. Synkov, V. Varyukhin, I. Vedernikova, A. Reshetov, A. Synkov, L. Polyakov and I. Korotchenkova: Solid State Phenom. 2006, vol. 114, pp. 69-78.CrossRefGoogle Scholar
  2. 2.
    Y. Beygelzimer, D. Orlov, and V. Varyukhin: in Ultrafine Grained Materials II, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., The Minerals, Metals & Materials Society, Warrendale, PA, 2002, pp. 297–304.Google Scholar
  3. 3.
    M. I. Latypov, M.-G. Lee, Y. Beygelzimer and H. S. Kim: Metals and Materials International 2015, vol. 21, pp. 569-579.CrossRefGoogle Scholar
  4. 4.
    S.A.A. AkbariMousavi and S.R. Bahadori: Mater. Sci. Eng. A 2011, vol. 528, pp. 1242-1246.CrossRefGoogle Scholar
  5. 5.
    N. M. Shkatulyak: Int. J. Adv. Mater. Sci. Eng. 2014, vol. 3, pp. 15-25.Google Scholar
  6. 6.
    V. V. Usov, N. M. Shkatulyak, P. A. Bryukhanov and Y. Beygelzimer: High Pressure Phys. Tech. 2011, vol. 21, pp. 102-109.Google Scholar
  7. 7.
    V. V. Usov, N. M. Shkatulyak, P. A. Bryukhanov and Y. Beygelzimer: High Pressure Phys. Tech. 2011, vol. 21, pp. 103-108.Google Scholar
  8. 8.
    S.R. Bahadori, K. Dehghani, and S.A.A. Akbari Mousavi: Mater. Lett. 2015, vol. 152, pp. 48–52.Google Scholar
  9. 9.
    ASTM Standard E407, 2007e1, Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA, 2007.Google Scholar
  10. 10.
    R. Hielscher and H. Schaeben: Journal of Applied Crystallography 2008, vol. 41, pp. 1024-1037.CrossRefGoogle Scholar
  11. 11.
    S. R. Kalidindi, C. A. Bronkhorst and L. Anand: Journal of the Mechanics and Physics of Solids 1992, vol. 40, pp. 537-569.CrossRefGoogle Scholar
  12. 12.
    S.R. Kalidindi: PhD Thesis, MIT, Cambridge, 1993.Google Scholar
  13. 13.
    S.V. Dobatkin, G.A. Salishev, A.A. Kuznecov, A. Reshetov, S. Synkov and T.N. Konkova: Physics and Techniques of High Pressure 2006, vol. 16, pp. 23-36.Google Scholar
  14. 14.
    M. I. Latypov, E. Y. Yoon, D. J. Lee, R. Kulagin, Y. Beygelzimer, M. S. Salehi and H.S. Kim: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2014, vol. 45, pp. 2232-2241.CrossRefGoogle Scholar
  15. 15.
    D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji and Z. Horita: Materials Science and Engineering A 2009, vol. 519, pp. 105-111.CrossRefGoogle Scholar
  16. 16.
    A. Reshetov, A. Korshunov, A. Smolyakov, Y. Beygelzimer, V. Varyukhin, I. Kaganova and A. Morozov: Materials Science Forum 2011, vol. 667-669, pp. 851-856.Google Scholar
  17. 17.
    G. R. Canova, U. F. Kocks and J. J. Jonas: Acta Metallurgica 1984, vol. 32, pp. 211-226.CrossRefGoogle Scholar
  18. 18.
    L. S. Toth, P. Gilormini and J. J. Jonas: Acta Metallurgica 1988, vol. 36, pp. 3077-3091.CrossRefGoogle Scholar
  19. 19.
    B. Beausir, L. S. Tóth and K. W. Neale: Acta Materialia 2007, vol. 55, pp. 2695-2705.CrossRefGoogle Scholar
  20. 20.
    F. Montheillet, P. Gilormini and J. J. Jonas: Acta Metallurgica 1985, vol. 33, pp. 705-717.CrossRefGoogle Scholar
  21. 21.
    L. S. Tóth, K. W. Neale and J. J. Jonas: Acta Metallurgica 1989, vol. 37, pp. 2197-2210.CrossRefGoogle Scholar
  22. 22.
    S. Li, I. J. Beyerlein and M. A. M. Bourke: Materials Science and Engineering: A 2005, vol. 394, pp. 66-77.CrossRefGoogle Scholar
  23. 23.
    S. Suwas, R. Arruffat-Massion, L.S. Tóth, A. Eberhardt, J.J. Fundenberger, and W. Skrotzki: Metall. Mater. Trans. A 2006, vol. 37A, pp. 739–53.Google Scholar
  24. 24.
    S. Suwas, B. Beausir, L.S. Tóth, J.J. Fundenberger, and G. Gottstein: Acta Mater., 2011, vol. 59, pp. 1121–33.Google Scholar
  25. 25.
    I. J. Beyerlein and L. S. Tóth: Progress in Materials Science 2009, vol. 54, pp. 427-510.CrossRefGoogle Scholar
  26. 26.
    Bunge HJ (1982) Texture analysis in materials science: mathematical methods. Butterworths, London.Google Scholar
  27. 27.
    Y. Beygelzimer, V. Varyukhin, S. Synkov and D. Orlov: Materials Science and Engineering A 2009, vol. 503, pp. 14-17.CrossRefGoogle Scholar
  28. 28.
    S. Li, I. J. Beyerlein, C. T. Necker, D. J. Alexander and M. Bourke: Acta materialia 2004, vol. 52, pp. 4859-4875.CrossRefGoogle Scholar
  29. 29.
    I. J. Beyerlein, S. Li, C. T. Necker, D. J. Alexander and C. N. Tomé: Philosophical Magazine 2005, vol. 85, pp. 1359-1394.CrossRefGoogle Scholar
  30. 30.
    A.D. Rollett and S.I. Wright: in Textures and Anisotropy. Preferred Orientations in Polycrystals and Their Effect on Materials Properties, U.F. Kocks, C.N. Tome, and H.-R. Wenk, eds., Cambridge University Press, Cambridge, UK, 1998.Google Scholar
  31. 31.
    A.D. Rollett, T.C. Lowe, U.F. Kocks, and M.G. Stout: in Eighth International Conference on Textures of Materials, J.S. Kallend and G. Gottstein, eds., The Metallurgical Society, Warrendale, PA, 1988, pp. 437–478.Google Scholar
  32. 32.
    P. D. Wu, K. W. Neale and E. Van der Giessen: International Journal of Plasticity 1996, vol. 12, pp. 1199-1219.CrossRefGoogle Scholar
  33. 33.
    M. Berta, D. Orlov and P. B. Prangnell: International Journal of Materials Research 2007, vol. 98, pp. 200-204.CrossRefGoogle Scholar
  34. 34.
    H. Zendehdel and A. Hassani: Materials and Design 2012, vol. 37, pp. 13-18.CrossRefGoogle Scholar
  35. 35.
    S. R. Kalidindi, B. R. Donohue and S. Li: International Journal of Plasticity 2009, vol. 25, pp. 768-779.CrossRefGoogle Scholar
  36. 36.
    Y. Beygelzimer, A. Reshetov, O. Prokof’eva and R. Kulagin: Journal of Materials Processing Technology 2009, vol. 209, pp. 3650-3656.CrossRefGoogle Scholar
  37. 37.
    R. Kulagin, M. I. Latypov, H. S. Kim, V. Varyukhin and Y. Beygelzimer: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2013, vol. 44, pp. 3211-3220.CrossRefGoogle Scholar
  38. 38.
    L. Anand and S. R. Kalidindi: Mechanics of Materials 1994, vol. 17, pp. 223-243.CrossRefGoogle Scholar
  39. 39.
    Y. T. Zhu and T. C. Lowe: Materials Science and Engineering A 2000, vol. 291, pp. 46-53.CrossRefGoogle Scholar
  40. 40.
    L. S. Tóth, Y. Estrin, R. Lapovok and C. Gu: Acta Materialia 2010, vol. 58, pp. 1782-1794.CrossRefGoogle Scholar
  41. 41.
    C. F. Gu and L. S. Tóth: Acta Materialia 2011, vol. 59, pp. 5749-5757.CrossRefGoogle Scholar
  42. 42.
    K. Kitayama, C. N. Tomé, E. F. Rauch, J. J. Gracio and F. Barlat: International Journal of Plasticity 2013, vol. 46, pp. 54-69.CrossRefGoogle Scholar
  43. 43.
    M.-G. Lee, R. H. Wagoner, J. K. Lee, K. Chung and H. Y. Kim: International Journal of Plasticity 2008, vol. 24, pp. 545-582.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Marat I. Latypov
    • 1
    • 6
  • Myoung-Gyu Lee
    • 2
  • Yan Beygelzimer
    • 3
    • 4
  • Denis Prilepo
    • 3
  • Yuri Gusar
    • 3
  • Hyoung Seop Kim
    • 1
    • 5
  1. 1.Center for Advanced Aerospace MaterialsPOSTECHPohangRepublic of Korea
  2. 2.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.Donetsk Institute of Physics & Engineering Institute of the National Academy of Sciences of Ukraine (NAS)KyivUkraine
  4. 4.Laboratory of Excellence on Design of Alloy Metals for Low-Mass Structures (DAMAS)Universite de LorraineMetzFrance
  5. 5.Department of Materials Science and EngineeringPOSTECHPohangRepublic of Korea
  6. 6.Georgia Tech-CNRS UMI 2958, Georgia Tech LorraineMetzFrance

Personalised recommendations