Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 2, pp 769–776 | Cite as

Microstructure Formation in Dissimilar Metal Welds: Electron Beam Welding of Ti/Ni

  • Subhradeep ChatterjeeEmail author
  • T. A. Abinandanan
  • G. Madhusudhan Reddy
  • Kamanio Chattopadhyay
Article

Abstract

We present results for electron beam welding of a binary Ti/Ni dissimilar metal couple. The difference in physical properties of the base metals and metallurgical features (thermodynamics and kinetics) of the system influence both macroscopic transport and microstructure development in the weld. Microstructures near the fusion interfaces are markedly different from those inside the weld region. At the Ti side, Ti2Ni dendrites are observed to grow toward the fusion interface, while in the Ni side, layered growth of γ-Ni, Ni3Ti, and Ni3Ti + NiTi eutectic is observed. Different morphologies of the latter eutectic constitute the predominant microstructure inside the weld metal region. These results are compared and contrasted with those from laser welding of the same binary couple, and a scheme of solidification is proposed to explain the observations. This highlights notable departures from welding of similar and other dissimilar metals such as a significant asymmetry in heat transport that governs progress of solidification from each side of the couple, and a lack of unique liquidus isotherm characterizing the liquid–solid front.

Keywords

Welding Weld Pool Ni3Ti Electron Beam Welding Marangoni Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Phanikumar, K. Chattopadhyay and P. Dutta: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 339–50.CrossRefGoogle Scholar
  2. 2.
    G. Phanikumar, P. Dutta and K. Chattopadhyay: Sci. Tech. Weld. Join,, 2005, vol. 10, pp. 158–66.CrossRefGoogle Scholar
  3. 3.
    T. Nelson, J. Lippold and M. Mills: Weld. J., 1999, vol. 78, pp. 329S–37S.Google Scholar
  4. 4.
    G. Phanikumar, S. Manjini, P. Dutta, K. Chattopadhyay and J. Mazumder: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2137–47.CrossRefGoogle Scholar
  5. 5.
    M. K. Lee, J. G. Lee, Y. H. Choi, D. W. Kim, C. K. Rhee, Y. B. Lee and S. J. Hong: Mater. Lett., 2010, vol. 64, pp. 1105–108.CrossRefGoogle Scholar
  6. 6.
    S. Sam, S. Kundu and S. Chatterjee: Mater. Des., 2012, vol. 40, pp. 237–44.CrossRefGoogle Scholar
  7. 7.
    B. Shanmugarajan and G. Padmanabham: Opt. Lasers Eng., 2012, vol. 50, pp. 1621–27.CrossRefGoogle Scholar
  8. 8.
    G. Satoh, Y. L. Yao and C. Qiu: Intl. J. Adv. Manuf. Technol., 2013, vol. 66, pp. 469–79.CrossRefGoogle Scholar
  9. 9.
    B. Chen, H. Xiong, B. Sun, S. Tang, B. Du and N. Li: Prog. Nat. Sci., 2014, vol. 24, pp. 313–20.CrossRefGoogle Scholar
  10. 10.
    B.-Q. Chen, H.-P. Xiong, S.-Q. Guo, B.-B. Sun, B. Chen and S.-Y. Tang: Metall. Mater. Trans. A, 2014, vol. 46A, pp. 756–61.Google Scholar
  11. 11.
    A. J. Cavaleiro, A. S. Ramos, F. M. Braz Fernandes, N. Schell and M. T. Vieira: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1625–29.CrossRefGoogle Scholar
  12. 12.
    S. Chen, M. Zhang, J. Huang, C. Cui, H. Zhang and X. Zhao: Mater. Des., 2014, vol. 53, pp. 504–11.CrossRefGoogle Scholar
  13. 13.
    I. Tomashchuk, P. Sallamand, H. Andrzejewski and D. Grevey: Intermet., 2011, vol. 19, pp. 1466–73.CrossRefGoogle Scholar
  14. 14.
    I. Tomashchuk, P. Sallamand, N. Belyavina and M. Pilloz: Mater. Sci. Eng. A, 2013, vol. 585, pp. 114–22.CrossRefGoogle Scholar
  15. 15.
    I. Tomashchuk, D. Grevey and P. Sallamand: Mater. Sci. Eng. A, 2015, vol. 622, pp. 37–45.CrossRefGoogle Scholar
  16. 16.
    H.-C. Chen, A. J. Pinkerton and L. Li: Int. J. Adv. Manuf. Technol., 2011, vol. 52, pp. 977–87.CrossRefGoogle Scholar
  17. 17.
    X. M. Qiu, M. G. Li, D. Q. Sun and W. H. Liu: J. Mater. Proc. Tech., 2006, vol. 176, pp. 8-12.CrossRefGoogle Scholar
  18. 18.
    H. Li, D. Sun, X. Cai, P. Dong and W. Wang: Mater. Des., 2012, vol. 39, pp. 285–93.CrossRefGoogle Scholar
  19. 19.
    H. Li, D. Sun, X. Cai, P. Dong and X. Gu: Opt. Laser Tech., 2013, vol. 45, pp. 453–60.CrossRefGoogle Scholar
  20. 20.
    H. Li, D. Sun, X. Gu, P. Dong and Z. Lv: Mater. Des., 2013, vol. 50, pp. 342–50.CrossRefGoogle Scholar
  21. 21.
    G. R. Mirshekari, A. Saatchi, A. Kermanpur and S. K. Sadrnezhaad: Opt. Laser Tech., 2013, vol. 54, pp. 151–58.CrossRefGoogle Scholar
  22. 22.
    J. Pouquet, R. Miranda, L. Quintino and S. Williams: Int. J. Adv. Manuf. Tech., 2012, vol. 61, pp. 205–12.CrossRefGoogle Scholar
  23. 23.
    H. Gugel, A. Schuermann and W. Theisen: Mater. Sci. Eng. A, 2008, vol. 481–482, pp. 668–71.CrossRefGoogle Scholar
  24. 24.
    J. Vannod, M. Bornert, J. E. Bidaux, L. Bataillard, A. Karimi, J. M. Drezet, M. Rappaz and A. Hessler-Wyser: Acta Mater., 2011, vol. 59, pp. 6538–46.CrossRefGoogle Scholar
  25. 25.
    B. Panton, A. Pequegnat and Y. N. Zhou: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3533–44.CrossRefGoogle Scholar
  26. 26.
    J. Seretsky and E. R. Ryba: Weld. J., 1976, vol. 55, pp. 208S–11S.Google Scholar
  27. 27.
    G. Metzger and R. Lison: Weld. J., 1979, vol. 55, pp. 230S–40S.Google Scholar
  28. 28.
    S. Chatterjee, T. Abinandanan and K. Chattopadhyay: J. Mater. Sci., 2006, vol. 41, pp. 643–52.CrossRefGoogle Scholar
  29. 29.
    S. Chatterjee, T. Abinandanan and K. Chattopadhyay: Mater. Sci. Eng. A, 2008, vol. 490, pp. 7-15.CrossRefGoogle Scholar
  30. 30.
    T. B. Massalski, H. Okamoto, P. Subramanian and L. Kacprzak: Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990, pp. 2874–76.Google Scholar
  31. 31.
    S. Kou: Welding Metallurgy, Wiley Interscience, Hoboken, 2003, pp. 170–98.Google Scholar
  32. 32.
    S. Chatterjee: Microstructure Development During Laser and Electron Beam Welding of Ti/Ni Dissimilar Joints, Indian Institute of Science, Bangalore, India, 2009. URL: http://etd.ncsi.iisc.ernet.in/handle/2005/601
  33. 33.
    T. B. Massalski and C. G. Woychik: Acta Met., 1985, vol. 33, pp. 1873–86.CrossRefGoogle Scholar
  34. 34.
    C. G. Woychik, D. H. Lowndes and T. B. Massalski: Acta Met., 1985, vol. 33, pp. 1861–71.CrossRefGoogle Scholar
  35. 35.
    R. Nagarajan and K. Chattopadhyay: Acta Met. Mater., 1994, vol. 42, pp. 947–58.CrossRefGoogle Scholar
  36. 36.
    S. Chatterjee, T. A. Abinandanan and K. Chattopadhyay: Met. Mater. Trans. A, 2008, vol. 39A, pp. 1638–46.CrossRefGoogle Scholar
  37. 37.
    N. Geveling and S. Maslenkov: Met. Sci. Heat Treat., 1976, vol. 18, pp. 755–60.CrossRefGoogle Scholar
  38. 38.
    S. Han and R. Trivedi: Met. Mater. Trans. A, 2000, vol. 31, pp. 1819–32.CrossRefGoogle Scholar
  39. 39.
    W. Kurz and R. Trivedi: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 625–34.CrossRefGoogle Scholar
  40. 40.
    J. S. Park and R. Trivedi: J. Crys. Growth, 1998, vol. 187, pp. 511–15.CrossRefGoogle Scholar
  41. 41.
    H. Cline and T. Anthony: J. Appl. Phys., 1977, vol. 48, pp. 3895–900.CrossRefGoogle Scholar
  42. 42.
    J. Hunt and K. Jackson: Trans. Met. Soc. AIME, 1966, vol. 236, pp. 843–52.Google Scholar
  43. 43.
    M. Croker, R. Fidler and R. Smith: Proc. R. Soc. A, 1973, vol. 335, pp. 15–37.CrossRefGoogle Scholar
  44. 44.
    J. Murray: The Ni-Ti (nickel-titanium) system, ASM International, Materials Park, 1987, pp. 197–211.Google Scholar
  45. 45.
    E. Brandes and G. Brook: Smithell’s Handbook, 7th Ed., Butterworth-Heinemann, Oxford, UK, 1992, pp. 14.19–14.10Google Scholar
  46. 46.
    C. Limmaneevichitr and S. Kou: Weld. J., 2000, vol. 79, pp. 231S–37S.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Subhradeep Chatterjee
    • 1
    Email author
  • T. A. Abinandanan
    • 2
  • G. Madhusudhan Reddy
    • 3
  • Kamanio Chattopadhyay
    • 2
  1. 1.Indian Institute of Technology HyderabadSangareddyIndia
  2. 2.Indian Institute of ScienceBangaloreIndia
  3. 3.Defence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations