Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 1, pp 510–521 | Cite as

Effect of ZrO2 Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications

  • Ashutosh Sharma
  • Myung-Hwan Roh
  • Do-Hyun Jung
  • Jae-Pil Jung
Article

Abstract

In this study, the effect of ZrO2 nanoparticles on Al-12Si-20Cu alloy has been studied as a filler metal for aluminum brazing. The microstructural and thermal characterizations are performed using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential thermal analysis (DTA). The intermetallic compound (IMC) phases are identified by the energy-dispersive spectroscopy analysis coupled with the SEM. The filler spreading test is performed according to JIS-Z-3197 standard. XRD and SEM analyses confirm the presence of Si particles, the CuAl2 (θ) intermetallic, and the eutectic structures of Al-Si, Al-Cu, and Al-Si-Cu in the Al matrix in the monolithic and composite samples. It is observed that when the ZrO2 is added in the alloy, the CuAl2 IMCs and Si particles are found to be dispersed uniformly in the Al matrix up to 0.05 wt pct ZrO2. DTA results show that the liquidus temperature of Al-12Si-20Cu filler metal is dropped from ~806.78 K to 804.6 K (533.78 °C to 531.6 °C) with a lowering of 2 K (2 °C) in liquidus temperature, when the amount of ZrO2 is increased up to 0.05 wt pct. It is also shown that the presence of ZrO2 nanoparticles in the filler metal has no deleterious effect on wettability up to 0.05 wt pct of ZrO2. The ultimate tensile strength and elongation percentage are also found to improve with the addition of ZrO2 nanoparticles in the Al-12Si-20Cu alloy.

Keywords

Ultimate Tensile Strength Filler Metal Joint Strength Percent Elongation Filler Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and was granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20142020104380).

References

  1. 1.
    I.J. Polmear: Light alloys From traditional alloys to nanocrystals, 4th ed., Elsevier-Butterworth Heinemann, 2006.Google Scholar
  2. 2.
    A.H. Musfirah and A.G. Jaharah: J. Appl. Sci. Res., 2012, vol. 8, pp. 4865-4875.Google Scholar
  3. 3.
    K. Thulukkanam: Heat Exchanger Design Handbook, 2nd ed., CRC press, Taylor and Francis group, Florida USA, 2013.CrossRefGoogle Scholar
  4. 4.
    L.C. Tsao, W.P. Weng, M.D. Cheng, C.W. Tsao and T.H. Chuang: J. Mater. Eng. Perform., 2002, vol. 11, pp. 360-364.CrossRefGoogle Scholar
  5. 5.
    G. Humpston, S.P.S. Sangha and D.M. Jacobson: Mater. Sci. Technol., 1995, vol. 11, pp. 1161-1168.CrossRefGoogle Scholar
  6. 6.
    K. Suzuki, M. Kagayama and Y. Takeuchi: J. Jpn. Inst. Light Met., 1993, vol. 43, pp. 533-538.CrossRefGoogle Scholar
  7. 7.
    W. Dai, Song-bai Xue, F. Ji, J. Lou, B. Sun and Shui-qing Wang: Int. J. Min. Met.Mater., 2013, vol. 20, pp. 365-370.CrossRefGoogle Scholar
  8. 8.
    Z. Niu, J. Huang, H. Yang, S. Chen, and X. Zhao: J. Mater. Eng. Perform., 2015, DOI: 10.1007/s11665-015-1509-y.Google Scholar
  9. 9.
    L.C. Tsao, M.J. Chiang, W.H. Lin, M.D. Cheng and T.H. Chuang: Mater. Charact., 2002, vol.48, pp. 341– 346.CrossRefGoogle Scholar
  10. 10.
    D.M. Jacobson, G. Humpston, and S.P.S. Sangha: A New Low Melting Point Aluminium Braze, Welding Research Supplement, 1996, pp. 243s–250s.Google Scholar
  11. 11.
    F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann and P. J. Uggowitzer: Int. J. Cast Metal. Res., 2012, vol. 25, pp. 215-224.CrossRefGoogle Scholar
  12. 12.
    C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou and H.H. Wang: Microelectron. Reliab., 2008, vol. 48, pp. 416–424.CrossRefGoogle Scholar
  13. 13.
    A. Sharma, S. Bhattacharya, S. Das, H.-J. Fecht and K. Das:J. Alloy. Compd., 2013, vol. 574, pp. 609–616.CrossRefGoogle Scholar
  14. 14.
    A. Sharma, S. Bhattacharya, S. Das and K. Das: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5587-5601.CrossRefGoogle Scholar
  15. 15.
    J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian and H.X. Gao: J. Electron. Mater., 2006, vol. 35, pp. 1672-1679.CrossRefGoogle Scholar
  16. 16.
    I.S. El-Mahallawi, A.Y. Shash and A.E. Amer: Metals, 2015, vol. 5, pp. 802-821.CrossRefGoogle Scholar
  17. 17.
    J. Nowacki and K. Moraneic: JMPEG, 2015, vol. 24, pp. 426-433.CrossRefGoogle Scholar
  18. 18.
    A. Sharma, D.U. Lim, and J.P. Jung: Mater. Sci. Technol., 2015, in press.Google Scholar
  19. 19.
    A.E. Karantzalis, A. Lekatou, E. Georgatis, V. Poulas and H. Mavros: JMPEG, 2010, vol. 19, pp. 585-590.CrossRefGoogle Scholar
  20. 20.
    A. Miranda, N. Alba-Baena, B.J. McKay, D.G. Eskin, S.H. Ko and J.S. Shin: Mater Sci. Forum, 2013, vol. 765, pp. 245-249.CrossRefGoogle Scholar
  21. 21.
    Japanese Industrial Standard, JIS Z-3197, 2012.Google Scholar
  22. 22.
    ASTM E-8: Standard Test Methods for Tension Testing of Metallic Materials, STM International, West Conshohocken, PA, 2011, www.astm.org.
  23. 23.
    JIS Z 3192: Methods for Tension and Shear Tests for Brazed Joint, 1988.Google Scholar
  24. 24.
    S.Y. Chang, L.C. Tsao, T.Y. Li and T.H. Chuang: J. Alloy. Compd., 2009, vol. 488, pp. 174–180.CrossRefGoogle Scholar
  25. 25.
    A. L. Kolesnikova and I. A. Ovid’ko, Phys Rev. B, 2004, vol. 69, pp. 035412.CrossRefGoogle Scholar
  26. 26.
    H. Choi and X. Li: J. Mater. Sci., 2012, vol. 47, pp. 3096–3102.CrossRefGoogle Scholar
  27. 27.
    Q. Li, T. Xia, Y. Lan, W. Zhao, L. Fan and P. Li: J. Alloy. Compd., 2013, vol. 577, pp. 232–236.CrossRefGoogle Scholar
  28. 28.
    J.L. Murray, A.J. McAlister: Bull. Alloy Phase Diagr., 1984, vol. 5, pp. 74-84.CrossRefGoogle Scholar
  29. 29.
    Q.S. Mei and K. Lu: Prog. Mater. Sci., 2007, vol. 52, pp. 1175–1262.CrossRefGoogle Scholar
  30. 30.
    D. G. Gromov, S. A. Gavrilov, E. N. Redichev and R. M. Ammosov: Phys. Solid State, 2007, vol. 49, pp. 178–184.CrossRefGoogle Scholar
  31. 31.
    S.M.L. Nai, J. Wei and M. Gupta: Thin Solid Films, 2006, vol. 504, pp. 401 – 404.CrossRefGoogle Scholar
  32. 32.
    H. Choi, H. Konishi and X. Li: Mater. Sci. Eng. A, 2012, vol. 541, pp. 159– 165.CrossRefGoogle Scholar
  33. 33.
    C.S. Goh, J. Wei, L.C. Lee and M. Gupta: Acta Mater., 2007, vol. 15, pp. 5115-5121.CrossRefGoogle Scholar
  34. 34.
    N. Ramakrishnan: Acta Mater., 1996, vol. 44, pp. 69-77.CrossRefGoogle Scholar
  35. 35.
    Z. Zhang, D.L. Chen: Scripta Mater., 2006, vol. 54, 1321-1326.CrossRefGoogle Scholar
  36. 36.
    M.M. Schwartz: Brazing, ASM International, Materials Park, 44073-0002, 2006.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Ashutosh Sharma
    • 1
  • Myung-Hwan Roh
    • 1
  • Do-Hyun Jung
    • 1
  • Jae-Pil Jung
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulKorea

Personalised recommendations