Metallurgical and Materials Transactions A

, Volume 47, Issue 1, pp 260–267 | Cite as

Thermally Induced Structural Transformations of Fe40Ni40P14B6 Amorphous Alloy

  • Milica M. Vasić
  • Pavla Roupcová
  • Naděžda Pizúrová
  • Sanja Stevanović
  • Vladimir A. Blagojević
  • Tomáš Žák
  • Dragica M. Minić


Thermal stability and thermally induced structural transformations of Fe40Ni40P14B6 amorphous alloy were examined under non-isothermal and isothermal conditions. Formation of metastable α-(Fe,Ni), and stable γ-(Fe,Ni) and (Fe,Ni)3(P,B) crystalline phases as the main crystallization products was observed, while the presence of small amounts of other crystalline phases like Fe23B6 and Fe2NiB was indicated by electron diffraction in HRTEM. Thermomagnetic curve indicated that Fe content in different crystalline phases is very different, resulting in markedly different Curie temperatures after crystallization. Transmission electron microscopy and atomic force microscopy study suggested multiple-layered platelet-shaped morphology, both on the surface and in the bulk of the crystallized alloy sample. The thermal treatment heating rate and maximum temperature affected surface roughness and grain size inhomogeneity.


Differential Scanning Calorimetry HRTEM Curie Temperature Metallic Glass Amorphous Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Professor Vladimir Pavlović (Faculty of Agriculture, University of Belgrade) for performing SEM measurement. This research was supported by the Ministry of Education and Science of Serbia, under the Projects 172057, by Grant 106/08/1440 of the Grant Agency of the Czech Republic, and by the Ministry of Education, Youth and Sports of the Czech Republic, Project No. 1M0512.


  1. 1.
    M. Mitera, T. Masumoto and N. S. Kazama: J. Appl. Phys., 1979, vol. 50, pp.7609.CrossRefGoogle Scholar
  2. 2.
    A. Inoue: Acta mater., 2009, vol. 48, pp. 279.CrossRefGoogle Scholar
  3. 3.
    Y.P. Gao, S.B. Gao, P.F. Yu, S.D. Feng, G. Li, P.K. Liaw and R.P. Liu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2395.CrossRefGoogle Scholar
  4. 4.
    4 H. Ma, W. Wang, J. Zhang, G. Li, C. Cao and H. Zhang, J., Mater. Sci. Technol., 2011, vol. 27, pp. 1169.CrossRefGoogle Scholar
  5. 5.
    5 M. Veligatla, S. Katakam, S. Das, N. Dahotre, R. Gopalan, D. Prabhu, D.A. Babu, H.Choi-Yim and S. Mukherjee: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1019.CrossRefGoogle Scholar
  6. 6.
    [6] S. Feng, G. Li, P. Yu, S. Zhang, M. Ma, L. Qi and R. Liu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1119.CrossRefGoogle Scholar
  7. 7.
    [7] H.J. Jung, M. Stoica, S. Yi, D.H. Kim and J. Eckert: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2415.CrossRefGoogle Scholar
  8. 8.
    [8] M. Iqbal, J.I. Akhter, H.F. Zhang and Z.Q. Hu: J. Non-Cryst. Solids, 2008, vol. 354, pp. 5363.CrossRefGoogle Scholar
  9. 9.
    [9] Y. Li, X. Jia, W. Zhang, C. Fang, X. Wang, F. Qin, S. Yamaura and Y. Yokoama: Metall. Mater. Trans. A, 2014, vol. 45A, 2393.CrossRefGoogle Scholar
  10. 10.
    Y. Hu, M.X. Pan, L. Liu, Y.H. Zhao, D.Q. Zhao and W.H. Wang: Mater. Lett., 2003, vol. 57, pp. 2698.CrossRefGoogle Scholar
  11. 11.
    A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, B. Kotur, A. Bajorek, O. Zivotsky and A. Hendrych: Mater. Chem. Phys., 2011, vol. 130, pp. 603.CrossRefGoogle Scholar
  12. 12.
    S.W. Du and R.V. Ramanujan: J. Non-Cryst. Solids, 2005, vol. 351, pp. 3105.CrossRefGoogle Scholar
  13. 13.
    H. Gleiter: Prog. Mater. Sci., 1989, vol. 33, pp. 223.CrossRefGoogle Scholar
  14. 14.
    A. Inoue, B. Shen and T. Ohsuna: Mater. Trans. JIM, 2002, vol. 43, pp. 2337.CrossRefGoogle Scholar
  15. 15.
    S. Ahmadi, H.R. Shahverdi and S.S. Saremi: J. Mater. Sci. Technol., 2011, vol. 27, pp. 735.CrossRefGoogle Scholar
  16. 16.
    A. Inoue, T. Zhang, T. Itoi and A. Takeuchi: Mater. Trans. JIM, 1997, vol. 38, pp. 359.CrossRefGoogle Scholar
  17. 17.
    Y. Yoshizawa and K. Yamauchi: Mater. Trans. JIM, 1990, vol. 31, pp 307.CrossRefGoogle Scholar
  18. 18.
    T. Kulik: J. Non-Cryst. Solids, 2001, vol. 287, pp. 145.CrossRefGoogle Scholar
  19. 19.
    T.D. Shen and R.B. Schwarz: Acta Mater., 2007, vol. 49, pp. 837.CrossRefGoogle Scholar
  20. 20.
    C.L. Chien and R. Hasegawa: Phys. Rev. B, 1977, vol. 16, pp. 3024.CrossRefGoogle Scholar
  21. 21.
    R.S. Tiwari, J. Non-Cryst. Solids, 1986, vol. 83, pp 126.CrossRefGoogle Scholar
  22. 22.
    B. Gu, F. Liu, Y.Z. Chen, Y.H. Yiang and Y.Z. Ma: J. Mater. Sci., 2014, vol. 49, pp. 842.CrossRefGoogle Scholar
  23. 23.
    L. Qiang: Sci China Ser E-Tech Sci, 2009, vol. 52, pp. 1919.CrossRefGoogle Scholar
  24. 24.
    X. Liu, Y. Shao, P. Gong and K.F. Yao: Mater. Lett., 2013, vol. 93, pp. 103.CrossRefGoogle Scholar
  25. 25.
    A. Zaluska and H. Matyja: Mater. Sci. Eng., 1988, vol. 97, pp. 347.CrossRefGoogle Scholar
  26. 26.
    X’Pert High Score Plus 2.0a, PANalytical BV, Lelyweg 1, Almelo, The NetherlandsGoogle Scholar
  27. 27.
    JCPDS PDF-2 Database, ICDD, Newton Square, PA, USA, 2005.Google Scholar
  28. 28.
  29. 29.
    L. Lutterotti: Nucl. Instrum. Meth. B, 2010, vol. 268, pp 334.CrossRefGoogle Scholar
  30. 30.
    T. Žák and Y.Jirásková: Surf. Interface Anal., 2006, vol. 38, pp. 710.CrossRefGoogle Scholar
  31. 31.
    P. Scherrer: Göttinger Nachrichten Gesell, 1918, vol. 2, pp. 98.Google Scholar
  32. 32.
    A.D. Romig and J.I. Goldstein: Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 1187.CrossRefGoogle Scholar
  33. 33.
    H. Erhart and H.J. Grabke: Metal Sci. 1981, vol. 15, pp. 401.CrossRefGoogle Scholar
  34. 34.
    J.I. Goldstein and R.E. Ogilvie: Trans. TMS-AIME, 1965, vol. 233, pp. 2083.Google Scholar
  35. 35.
    A.S. Doan and J.I. Goldstein: Metallurgical Transactions, 1970, vol. 1, pp. 1759.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Milica M. Vasić
    • 1
  • Pavla Roupcová
    • 2
  • Naděžda Pizúrová
    • 2
  • Sanja Stevanović
    • 3
  • Vladimir A. Blagojević
    • 4
  • Tomáš Žák
    • 2
  • Dragica M. Minić
    • 5
  1. 1.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.CEITEC IPMInstitute of Physics of Materials AS CRBrnoCzech Republic
  3. 3.Institute for Chemistry, Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  4. 4.Institute of Technical SciencesSerbian Academy of Sciences and ArtsBelgradeSerbia
  5. 5.Department of Biochemical SciencesState University in Novi PazarNovi PazarSerbia

Personalised recommendations