Metallurgical and Materials Transactions A

, Volume 47, Issue 1, pp 608–622 | Cite as

Phase Field Modeling of Microstructure Banding in Steels

  • Mehran Maalekian
  • Hamid Azizi-Alizamini
  • Matthias MilitzerEmail author


A phase field model (PFM) is applied to simulate the effects of microsegregation, cooling rate, and austenite grain size on banding in a C-Mn steel. The PFM simulations are compared with experimental observations of continuous cooling transformation tests in the investigated steel. Using electron probe microanalysis, the microsegregation characteristics of Mn were determined and introduced into the model. Ferrite nucleation is assumed to occur at austenite grain boundaries, and ferrite growth is simulated as mixed-mode reaction for para-equilibrium conditions. The driving pressure for the austenite to ferrite transformation depends on Mn concentration and thus varies between the alternating microsegregation layers. In agreement with experimental observations, the simulation results demonstrate that by increasing the cooling rate and/or austenite grain size, banding tends to disappear as the transformation shifts to lower temperatures such that ferrite also forms readily in the layers with higher Mn levels. Further, a parametric study is conducted by changing thickness and Mn content of the bands. In accordance with experimental observations, it is shown that for sufficiently large band thickness, band splitting takes place where ferrite grains form close to the center of the Mn-rich band. Changing the degree of Mn segregation indicates that a segregation level of 0.2 wt pct is necessary in the present case to achieve banded microstructures.


Ferrite Austenite Pearlite Phase Field Model Critical Cool Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged with gratitude.


  1. 1.
    1. G. Krauss, Metall Mater Trans B 2003, vol. 34, pp. 781-792.CrossRefGoogle Scholar
  2. 2.
    2. R. Grossterlinden, R. Kawalla, U. Lotter and H. Pircher, Steel Res 1992, vol. 63, pp. 331-336.Google Scholar
  3. 3.
    T. Majka, D. Matlock, and G. Krauss, Metall. Mater. Trans. A 2002, vol. 33, pp. 1627-1637.CrossRefGoogle Scholar
  4. 4.
    4. S. E. Offerman, N. H. van Dijk, M. T. Rekveldt, J. Sietsma and S. van der Zwaag, Mater Sci Tech 2002, vol. 18, pp. 297-303.CrossRefGoogle Scholar
  5. 5.
    5. P. E. J. Rivera-Diaz-Del-Castillo, J. Sietsma and S. Van der Zwaag, Metall Mater Trans A 2004, vol. 35A, pp. 425-433.CrossRefGoogle Scholar
  6. 6.
    6. S. W. Thompson and P. R. Howell, Mater Sci Technol 1992, vol. 8, pp. 777-784.CrossRefGoogle Scholar
  7. 7.
    7. J. S. Kirkaldy, J. von Destinon-Forstmann and R. J. Brigham, Can Metall Quart 1962, vol. 1, pp. 59-81.CrossRefGoogle Scholar
  8. 8.
    8. C. Bos, M. G. Mecozzi, D. N. Hanlon, M. P. Aarnts and J. Sietsma, Metall Mater Trans A 2011, vol. 42A, pp. 3602-3610.CrossRefGoogle Scholar
  9. 9.
    9. M. Militzer, M. G. Mecozzi, J. Sietsma and S. van der Zwaag, Acta Mater 2006, vol. 54, pp. 3961-3972.CrossRefGoogle Scholar
  10. 10.
    10. R. S. Qin and H. K. Bhadeshia, Mater Sci Tech 2010, vol. 26, pp. 803-811.CrossRefGoogle Scholar
  11. 11.
    11. T. W. Heo and L. Q. Chen, JOM 2014, vol. 66, pp. 1520-1528.CrossRefGoogle Scholar
  12. 12.
    12. C. Shen, J. Li and Y. Z. Wang, Metall Mater Trans A 2008, vol. 39A, pp. 976-983.CrossRefGoogle Scholar
  13. 13.
    13. L. Zhang, L. Q. Chen and Q. Du, J. Comput. Phys. 2010, vol. 229, pp. 6574-6584.CrossRefGoogle Scholar
  14. 14.
    14. R. G. Thiessen, J. Sietsma, T. A. Palmer, J. W. Elmer and I. M. Richardson, Acta Materialia 2007, vol. 55, pp. 601-614.CrossRefGoogle Scholar
  15. 15.
    15. M.G. Mecozzi, M. Militzer, J. Sietsma and S. van der Zwaag, Metall Mater Trans A 2008, vol. 39, pp. 1237-1247.CrossRefGoogle Scholar
  16. 16.
    16. M. Militzer, Curr Opin Solid St M 2011, vol. 15, pp. 106-115.CrossRefGoogle Scholar
  17. 17.
    17. H. Azizi-Alizamini, M. Militzer and W. J. Poole, Metall Mater Trans A 2011, vol. 42A, pp. 1544-1557.CrossRefGoogle Scholar
  18. 18.
    Phase field simulation software MICRESS, versions 6.01 (2013).
  19. 19.
    19. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende, Physica D 1996, vol. 94, pp. 135-147.CrossRefGoogle Scholar
  20. 20.
    20. J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach, Physica D 1998, vol. 115, pp. 73-86.CrossRefGoogle Scholar
  21. 21.
    21. W. F. Lange, M. Enomoto and H. I. Aaronson, Metall Mater Trans A 1988, vol. 19, pp. 427-440.CrossRefGoogle Scholar
  22. 22.
    22. S. E. Offerman, N. H. van Dijk, J. Sietsma, S. Grigull, E. M. Lauridsen, L. Margulies, H. F. Poulsen, M. T. Rekveldt and S. van der Zwaag, Science 2002, vol. 298, pp. 1003-1005.CrossRefGoogle Scholar
  23. 23.
    23. G. P. Krielaart and S. van der Zwaag, Mater Sci Tech 1998, vol. 14, pp. 10-18.CrossRefGoogle Scholar
  24. 24.
    Handbook of chemistry and physics. CRC Press, Boca Raton (FL), 1989.Google Scholar
  25. 25.
    25. J. A. Eckert, P. R. Howell and S. W. Thompson, J Mater Sci 1993, vol. 28, pp. 4412-4420.CrossRefGoogle Scholar
  26. 26.
    26. L.E. Samuels, In ASM, (Metals Park: OH, 1980).Google Scholar
  27. 27.
    27. J. D. Verhoeven, J Mater Eng Perform 2000, vol. 9, pp. 286-296.CrossRefGoogle Scholar
  28. 28.
    28. P.G. Bastien, J Iron Steel Inst 1957, vol. 187, pp. 281–291.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Mehran Maalekian
    • 1
  • Hamid Azizi-Alizamini
    • 2
    • 3
  • Matthias Militzer
    • 2
    Email author
  1. 1.AIM Metals & Alloys LPMontrealCanada
  2. 2.Department of Materials EngineeringThe University of British ColumbiaVancouverCanada
  3. 3.McMaster UniversityHamiltonCanada

Personalised recommendations