Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 1, pp 494–503 | Cite as

Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy

  • Ashutosh Sharma
  • Heung-Rak Sohn
  • Jae Pil Jung
Article

Abstract

The effect of graphene nanoplatelets (GNPs) on the wettability, microstructure, and tensile properties of Sn-3.0Ag-0.5Cu (SAC 305) was studied using melting and casting route. The microstructure of the bulk solder is observed with a scanning electron microscope and transmission electron microscope, and the intermetallic compound (IMC) phases are identified by electron probe micro-analyzer. The solderability of the samples is assessed by spreading and wetting tests on a Cu substrate. The experimental results indicate that an addition of 0.05 wt pct GNPs in Sn-3Ag-0.5Cu solder improves the spreading and wettability significantly compared to monolithic SAC. It is also revealed that the thickness of the Ag3Sn IMCs is reduced as compared to the monolithic SAC alloy. Tensile results show that the composite solder exhibits the 13.9 pct elongation and 17 pct increase in the ultimate tensile strength when 0.05 wt pct GNPs in Sn-3Ag-0.5Cu alloy are added. This may be due to the refinement of the IMCs in composite solders compared to the same in Sn-3Ag-0.5Cu alloy brought about by the uniform dispersion of graphene nanoplatelets. It is suggested in this study that the amount of GNPs in Sn-3Ag-0.5Cu alloy should not exceed 0.05 wt pct as it may degrade the desired properties due to the agglomeration of GNPs.

Keywords

Ultimate Tensile Strength Elongation Percentage Composite Solder Solder Matrix Recede Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by the Technology Innovation Program (or Industrial Strategic technology development program, 10051436, Development and mass production of 25 pct reduced prices nano-micro compound Pb-free solder paste for automotive devices to respond to ELV Directive) funded By the Ministry of Trade, Industry & Energy (MI, Korea).

References

  1. 1.
    M. Abtew and G. Selvaduray: Mater. Sci. Eng. R, 2000, vol. 27, pp. 95–141.CrossRefGoogle Scholar
  2. 2.
    K. Zeng and K.N. Tu: Mater. Sci. Eng. R, 2002, vol. 38, pp. 55–105.CrossRefGoogle Scholar
  3. 3.
    K. Suganuma: Curr. Opin. Solid State. Mater., 2001, vol. 5, pp. 55–64.CrossRefGoogle Scholar
  4. 4.
    F. Guo: J. Mater. Sci.: Mater. Electron., 2007, vol. 18, pp. 129–45.Google Scholar
  5. 5.
    J.H. Park, H.Y. Lee, J.H. Jhun, C.S. Cheon and J.P. Jung: JWJ, 2008, vol. 26, pp. 43–48.Google Scholar
  6. 6.
    J.W. Moon, M.-II Kim and J.P. Jung: JWJ, 2002, vol. 20, pp. 99–103.Google Scholar
  7. 7.
    Y.S. Ki, H.-II Kim, J.M. Kim and Y.E. Shin: JWJ, 2003, vol. 21, pp. 92–98.Google Scholar
  8. 8.
    K. S. Kim, S. H. Huh and K. Suganuma: J. Alloy. Compd., 2003, vol. 352, pp. 226–36.CrossRefGoogle Scholar
  9. 9.
    X.L. Zhong and M. Gupta: J. Phys. D: Appl. Phys., 2008, vol. 41, pp. 095403.CrossRefGoogle Scholar
  10. 10.
    P. Liu, P. Yao and J. Liu: J. Electron. Mater., 2008, vol. 37, pp. 874–79.CrossRefGoogle Scholar
  11. 11.
    A.K. Gain, Y.C. Chan and W.K.C. Yung:Microelectron. Reliab., 2011, vol. 51, pp. 2306–13.CrossRefGoogle Scholar
  12. 12.
    S. Chantaramanee, S. Wisutmethangoon, L. Sikong and T. Plookphol: J. Mater. Sci.: Mater. Electron., 2013, vol. 24, 2013, pp. 3707–15.Google Scholar
  13. 13.
    M.A.A. Mohd Salleh, A.M. Mustafa Al Bakri, H. Kamarudin, M. Bnhussain, M.H. Zan@Hazizi, and F. Somidin: Phys. Proc., 2011, vol. 22, pp. 299–304.Google Scholar
  14. 14.
    A.K. Gain, Y.C. Chan and W.K.C. Yung: Micelectron. Reliab., 2011, vol. 51, 975–84.CrossRefGoogle Scholar
  15. 15.
    A. Sharma, S. Bhattacharya, S. Das, H.-J. Fecht and K. Das: J. Alloy. Compd., 2013, vol. 574, pp. 609–16.CrossRefGoogle Scholar
  16. 16.
    A. Sharma, S. Bhattacharya, S. Das and K. Das: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5587–01.CrossRefGoogle Scholar
  17. 17.
    D.B. Miracle: Compos. Sci. Technol., 2005, vol. 65, pp. 2526–40.CrossRefGoogle Scholar
  18. 18.
    M. Rashad, F. Pan, A. Tang and M. Asif: Prog. Nat. Sci. : Mater. Int., 2014, vol. 24, pp. 101–08.CrossRefGoogle Scholar
  19. 19.
    J. Dutkiewicz, P. Ozga, W. Maziarz, J. Pstrus, B. Kania, P. Bobrowski and J. Stolarska: Mater. Sci. Eng. A, 2015, vol. 628, pp. 124–34.CrossRefGoogle Scholar
  20. 20.
    J.Y. Wang, Z.Q. Li, G.L. Fan, H.H. Pan, Z.X. Chen and D. Zhang: Scr. Mater., 2012, vol. 66, pp. 594–97.CrossRefGoogle Scholar
  21. 21.
    Testing methods for soldering fluxes, Japanese Industrial Standards, JIS Z 3197: (2012).Google Scholar
  22. 22.
    D.A. Bolleddula: PhD Thesis, University of Washington Graduate School, 2011.Google Scholar
  23. 23.
    A.S.M.A. Haseeb, M.M. Arafat and M.R. Johan: Mat. Char., 2012, vol. 64, pp. 27–35.CrossRefGoogle Scholar
  24. 24.
    J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian and H.X. Gao: J. Electron. Mater., 2006, vol. 35, pp. 1672–79.CrossRefGoogle Scholar
  25. 25.
    P.A. Meenan, S.R. Anderson and D.L. Klug: in Handbook of Industrial Crystallization, A.S. Myerson, ed. Elsevier, Amsterdam, 2001, pp. 67–100.Google Scholar
  26. 26.
    Giles Humpston, David M. Jacobson: Principles of Soldering, ASM International, 2004.Google Scholar
  27. 27.
    R. Rioboo, M. Marengo, and C. Tropea: Exp. Fluids, 2002, vol. 33, pp. 112–24.CrossRefGoogle Scholar
  28. 28.
    S. Middleman. Modeling Axisymmetric Flows. Academic Press, London, 1995.Google Scholar
  29. 29.
    L.H. Tanner: J. Phys. D: Appl. Phys., 1979, vol. 12, pp. 1473–84.CrossRefGoogle Scholar
  30. 30.
    H. Y. Lee, A. Sharma, S. H. Kee, Y. W. Lee, J. T. Moon and J. P. Jung: Electron. Mater. Lett., 2014, vol. 10, pp. 997–1004.CrossRefGoogle Scholar
  31. 31.
    H. Wang, F. Wang, F. Gao, X. Ma and Y. Qian: J. Alloy. Compd., 2007, vol. 433, pp. 302–05.CrossRefGoogle Scholar
  32. 32.
    K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia and J. M. Schoenung: Acta Mater., 2014, vol. 62, pp. 141–55.CrossRefGoogle Scholar
  33. 33.
    T. Siewert, S. Liu, D.R. Smith and J.C. Madeni: Database for Solder Properties with Emphasis on New Lead-free Solders, NIST, Colorado, 2002.Google Scholar
  34. 34.
    M. Rashad, F. Pan, A. Tang and M. Asif: Proc. Natl. Sci.: Mater. Int., 2014, vol. 24, pp. 101–08.Google Scholar
  35. 35.
    Y. Kim, J. Lee2, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon and S. M. Han: Nat. Commun., 2013, vol. 4, pp. 2114.Google Scholar
  36. 36.
    K.M. Kumar, V. Kripesh and A.A.O. Tay: J. Alloy. Compd., 2008, vol. 450, pp. 229–37.CrossRefGoogle Scholar
  37. 37.
    S.M.L. Nai, J. Wei and M. Gupta: Mater. Sci. Eng. A, 2006, vol. 423, pp. 166–69.CrossRefGoogle Scholar
  38. 38.
    C.S. Goh, J. Wei, L.C. Lee and M. Gupta: Acta Mater., 2007, vol. 55, pp. 5115–21.CrossRefGoogle Scholar
  39. 39.
    R.J. Arsenault and N. Shi: Mater. Sci. Eng. A, 1986, vol. 81, pp. 175–87.CrossRefGoogle Scholar
  40. 40.
    S.R. Bakshi and A. Agarwal: Carbon, 2011, vol. 49, pp. 533–44.CrossRefGoogle Scholar
  41. 41.
    C.S. Goh, J. Wei, L.C. Lee and M. Gupta: Mater. Sci. Eng. A, 2006, vol. 423, pp. 153–56.CrossRefGoogle Scholar
  42. 42.
    ASM Handbook, Fractography, The Materials Information Society, Fractogrphy, vol-12.Google Scholar
  43. 43.
    K.S. Kim, S.H. Huh and K. Suganuma: Mater. Sci. Eng. A, 2002, vol. 333, pp. 106–14.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Ashutosh Sharma
    • 1
  • Heung-Rak Sohn
    • 2
  • Jae Pil Jung
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulKorea
  2. 2.KD One Co., Ltd.AsanKorea

Personalised recommendations