Metallurgical and Materials Transactions A

, Volume 47, Issue 1, pp 347–359 | Cite as

Analysis and Characterization of the Role of Ni Interlayer in the Friction Welding of Titanium and 304 Austenitic Stainless Steel

  • C. H. MuralimohanEmail author
  • M. Ashfaq
  • Rouholah Ashiri
  • V. Muthupandi
  • K. Sivaprasad


Joining of commercially pure Ti to 304 stainless steel by fusion welding processes possesses problems due to the formation of brittle intermetallic compounds in the weld metal, which degrade the mechanical properties of the joints. Solid-state welding processes are contemplated to overcome these problems. However, intermetallic compounds are likely to form even in Ti-SS joints produced with solid-state welding processes such as friction welding process. Therefore, interlayers are employed to prevent the direct contact between two base metals and thereby mainly to suppress the formation of brittle Ti-Fe intermetallic compounds. In the present study, friction-welded joints between commercially pure titanium and 304 stainless steel were obtained using a thin nickel interlayer. Then, the joints were characterized by optical microscopy, scanning electron microscopy, energy dispersive spectrometry, and X-ray diffractometry. The mechanical properties of the joints were evaluated by microhardness survey and tensile tests. Although the results showed that the tensile strength of the joints is even lower than titanium base metal, it is higher than that of the joints which were produced without nickel interlayer. The highest hardness value was observed at the interface between titanium and nickel interlayers indicating the formation of Ni-Ti intermetallic compounds. Formation these compounds was validated by XRD patterns. Moreover, in tensile tests, fracture of the joints occurred along this interface which is related to its brittle nature.


Intermetallic Compound Energy Dispersive Spectroscopy Friction Welding Ni3Ti Interaction Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the Grants received from the Directorate of Naval R & D, Naval Research Board, New Delhi (DNRD/05/4003/NRB/126, dated 20.11.2007) for supporting this research work.


  1. 1.
    S. Chen, J. Huang, K. Ma, X. Zhao, and A. Vivek: Metall. Mater. Trans., 2014, vol. 45A, pp. 3064-3073.CrossRefGoogle Scholar
  2. 2.
    S. Kundu, D. Roy, S. Chatterjee, D. Olson and B. Mishra: Mater. Des., 2012, vol. 37, 560-568.CrossRefGoogle Scholar
  3. 3.
    S. Kundu, S. Sam and S. Chatterjee: Mater. Des., 2011, vol. 32, pp. 2997-3003.CrossRefGoogle Scholar
  4. 4.
    Z. Sun and R. Karppi: J. Mater. Process. Technol., 1996, vol. 59, pp. 257-267.CrossRefGoogle Scholar
  5. 5.
    S. Chen, M. Zhang, J. Huang, C. Cui, H. Zhang and X. Zhao: Mater. Des., 2014, vol. 53, pp. 504-511.CrossRefGoogle Scholar
  6. 6.
    S. Sam, S. Kundu and S. Chatterjee: Mater. Des., 2012, vol. 47, pp. 237-244.CrossRefGoogle Scholar
  7. 7.
    M.J. Torkamany, F. MalekGhaini and R. Poursalehi: Mater. Des., 2014, vol. 53, pp. 915-920.CrossRefGoogle Scholar
  8. 8.
    K. Szymlek: Adv. Mater. Sci., 2008, vol. 8, pp. 186-194.Google Scholar
  9. 9.
    H. Xia, S. Wang and H. Ben: Mater. Des., 2014, vol. 56, pp. 1014-1019.CrossRefGoogle Scholar
  10. 10.
    S.A.A. Akbari Mousavi and P. Farhadi Sartangi: Mater. Des., 2009, vol. 30, pp. 459-468.CrossRefGoogle Scholar
  11. 11.
    H.C. Dey, M. Ashfaq, A.K. Bhaduri and K. PrasadRao: J. Mater. Process. Technol., 2009, vol. 209, pp. 5862-5870.CrossRefGoogle Scholar
  12. 12.
    T. Vigraman, D. Ravindran and R. Narayanasamy: Mater. Des., 2012, vol. 36, pp. 714-727.CrossRefGoogle Scholar
  13. 13.
    K.N. Campo, L.C. Campanelli, L. Bergmann, J.F. dosSantos and C. Bolfarini: Mater. Des., 2014, vol. 56, pp. 139-145.CrossRefGoogle Scholar
  14. 14.
    M. Fazel-Najafabadi, S.F. Kashani-Bozorg and A. Zarei-Hanzaki: Mater. Des., 2011, vol. 32, pp. 1824-1832.CrossRefGoogle Scholar
  15. 15.
    M. Kimura, T. Iijima, M. Kusaka, K. Kaizu and A. Fuji: Mater. Des. 2014, vol. 55, pp. 152-164.CrossRefGoogle Scholar
  16. 16.
    S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale and S. Chatterjee: Mater. Sci. Eng. A, 2005, vol. 407, pp. 154-160.CrossRefGoogle Scholar
  17. 17.
    J.S. Ha and S.I. Hong: Mater. Des., 2013, vol. 51, pp. 293-299.CrossRefGoogle Scholar
  18. 18.
    S. Kundu, M. Ghosh and S. Chatterjee: ISIJ. Int., 2004, vol. 44, pp. 1882-1887.CrossRefGoogle Scholar
  19. 19.
    H.M. Li, D.Q. Sun, X.L. Cai, P. Dong and W.Q. Wang: Mater. Des., 2012, vol. 39, pp. 285-293.CrossRefGoogle Scholar
  20. 20.
    S. Kundu, B. Mishra, D.L. Olson and S. Chatterjee: Mater. Des., 2013, vol. 51, pp. 714-722.CrossRefGoogle Scholar
  21. 21.
    Y. Deng, G. Sheng and C. Xu: Mater. Des., 2013, vol. 46, pp. 84-87.CrossRefGoogle Scholar
  22. 22.
    R. SoltaniTashi, S.A.A. AkbariMousavi and M. MazarAtabaki: Mater. Des., 2014, vol. 54, pp. 161-167.CrossRefGoogle Scholar
  23. 23.
    T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1996.Google Scholar
  24. 24.
    Z. Zhong, T. Hinoki, H.-C. Jung, Y.-H. Park and A. Kohyama: Mater. Des., 2010, vol. 31, pp. 1070-1076.CrossRefGoogle Scholar
  25. 25.
    G.R. Kamat: Weld. J., 1988, vol. 67, pp. 44-46.Google Scholar
  26. 26.
    S.D. Meshram, T. Mohandas and G. Madhusudhan Reddy: J. Mater. Process. Technol., 2007, vol. 184, pp. 330-337.CrossRefGoogle Scholar
  27. 27.
    D. Ananthapadmanaban, V. SeshagiriRao, N. Abraham and K. PrasadRao: Mater. Des., 2009, vol. 30, pp. 2642-2646.CrossRefGoogle Scholar
  28. 28.
    P. Sathiya, S. Aravindan and A. Noorul Haq: Mater. Des., 2008, vol. 29, pp. 1099-1109.CrossRefGoogle Scholar
  29. 29.
    A.R. Mcandrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo and M.J. Russell: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 6118-6128.CrossRefGoogle Scholar
  30. 30.
    A. Fuji, K. Ameyama and T.H. North: J. Mater. Sci., 1996, vol. 31, pp. 819-827.CrossRefGoogle Scholar
  31. 31.
    G. Luetjering and J. Albrecht: Ti-2003 Science and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2004, pp. 793-798.Google Scholar
  32. 32.
    L.S. Lance: Proceedings of the Symposium on Materials for Extreme Environments, GE Global Research, Niskayuna, New York, May 23–24, 2005.Google Scholar
  33. 33.
    DeZurik: Technical Report, 10.60-2. DeZurik., 1997.
  34. 34.
    J.D. Whittenberger and E. Vesely: Technical Memorandum, NASA, USA, 1990, pp. 1–21.Google Scholar
  35. 35.
    A. Fuji, T.H. North, K. Ameyama and M. Futamata: Mater. Sci. Technol., 1992, vol. 8, pp. 219-235.CrossRefGoogle Scholar
  36. 36.
    P. Li, J. Li, M. Salman, L. Li, J. Xiong and F. Zhang: Mater. Des., 2014, vol. 56, pp. 649-656.CrossRefGoogle Scholar
  37. 37.
    M. Ghosh and S. Chatterjee: Mater. Sci. Eng. A, 2003, vol. 358, pp. 152-158.CrossRefGoogle Scholar
  38. 38.
    K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511-678.CrossRefGoogle Scholar
  39. 39.
    A. Fuji, Y. Horiuchi and K. Yamamoto: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 287-294.CrossRefGoogle Scholar
  40. 40.
    N. Ozdemir: Mater. Lett., 2005, vol. 59, pp. 2504-2509.CrossRefGoogle Scholar
  41. 41.
    K. Topolski, P. Wiecinski, Z. Szulc, A. Galka and H. Garbacz: Mater. Des., 2014, vol. 63, pp. 479-487.CrossRefGoogle Scholar
  42. 42.
    S. Kundu, G. Anand and S. Chatterjee: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2196-2211.CrossRefGoogle Scholar
  43. 43.
    M. Fazel-Najafabadi, S.F. Kashani-Bozorg and A. Zarei-Hanzaki: Mater. Des., 2010, vol. 31, pp. 4800-4807.CrossRefGoogle Scholar
  44. 44.
    S.A.A. Akbarimousavi and M. Goharikia: Mater. Des., 2011, vol. 32, pp. 3066-3075.CrossRefGoogle Scholar
  45. 45.
    M. Fazel-Najafabadi, S.F. Kashani-Bozorg and A. Zarei-Hanzaki: Mater. Des., 2011, vol. 32, pp. 1824-1832.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • C. H. Muralimohan
    • 1
    • 2
    Email author
  • M. Ashfaq
    • 3
  • Rouholah Ashiri
    • 4
    • 5
  • V. Muthupandi
    • 1
  • K. Sivaprasad
    • 6
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology TiruchirappalliTiruchirappalliIndia
  2. 2.Department of AgglomerationJSW Steel LimitedVidyanagarIndia
  3. 3.FARCAMT Chair, Advanced Manufacturing InstituteKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  5. 5.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  6. 6.Advanced Materials Processing Laboratory, Department of Metallurgical and Materials EngineeringNational Institute of Technology TiruchirappalliTiruchirappalliIndia

Personalised recommendations