Metallurgical and Materials Transactions A

, Volume 46, Issue 12, pp 5671–5684 | Cite as

Size Effects on Strength in the Transition from Single-to-Polycrystalline Behavior

  • Pradipta Ghosh
  • Atul H. Chokshi


During the transition from single crystalline to polycrystalline behavior, the available data show the strength increasing or decreasing as the number of grains in a cross section is reduced. Tensile experiments were conducted on polycrystalline Ni with grain sizes (d) between 16 and 140 μm and varying specimen thickness (t), covering a range of λ (=t/d) between ~0.5 and 20. With a decrease in λ, the data revealed a consistent trend of strength being independent of λ at large λ, an increase in strength, and then a decrease in strength. Microstructural studies revealed that lower constraints enabled easier rotation of the surface grains and texture evolution, independent of the specimen thickness. In specimen interiors, there was a greater ease of rotation in thinner samples. Measurements of misorientation deviations within grains revealed important differences in the specimen interiors. A simple model is developed taking into account the additional geometrically necessary dislocations due to variations in the behavior of surface and interior grains, leading to additional strengthening. A suitable combination of this strengthening and surface weakening can give rise to wide range of possibilities with a decrease in λ, including weakening, strengthening, and strengthening and weakening.


Digital Image Correlation Sample Thickness Polycrystalline Sample Thin Sample Taylor Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Department of Science and Technology. One of us (AHC) acknowledges with gratitude the support provided by Professor Laszlo Toth at the University of Lorraine (Metz) during a sabbatical leave. We would like to acknowledge useful discussions with Professor Satyam Suwas at Indian Institute of Science (IISc) relating to texture strength and Taylor Factor calculations. PG would also like to acknowledge the help of Prof. Jozef Keckes (Montan University) and Anuj Bristhi (IISc) for X-ray measurements and dislocation density calculations.

Supplementary material

11661_2015_3174_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1734 kb)


  1. 1.
    O. E. Hall, Proc. Phys. Soc. London, B64 (1951) 747-753CrossRefGoogle Scholar
  2. 2.
    N. J. Petch, J. Iron Steel Inst., 174 (1953) 25-28Google Scholar
  3. 3.
    H. Conrad, Mater. Sci. Eng., A 341 (2003) 216-228CrossRefGoogle Scholar
  4. 4.
    A. H. Chokshi, A. Rosen A, J. Karch, H. Gleiter, Scr. Metall., 23 (1989) 1679-1683CrossRefGoogle Scholar
  5. 5.
    J. Schiotz, F. D. Di Tolla, K. W. Jacobsen, Nature 391 (1998) 561-563CrossRefGoogle Scholar
  6. 6.
    S. S. Brenner, J. Appl. Phys., 27 (1956) 1484-1491CrossRefGoogle Scholar
  7. 7.
    S.S. Brenner, J. Appl. Phys., 28 (1957) 1023-1026CrossRefGoogle Scholar
  8. 8.
    M. Uchic, D. Dimiduk, J. Florando, W. Nix, Science 305 (2004) 986-989CrossRefGoogle Scholar
  9. 9.
    J. R. Greer, W. C. Oliver, W. D. Nix, Acta Mater., 53 (2005) 1821-1830CrossRefGoogle Scholar
  10. 10.
    S. I. Rao, D. M. Dimiduk, T. A. Parthasarathy, M. D. Uchic, M. Tang, C. Woodward, Acta Mater., 56 (2008) 3245-3259CrossRefGoogle Scholar
  11. 11.
    E. Orowan, Symposium on Internal Stresses, Institute of Metals, London, 1947, 45Google Scholar
  12. 12.
    J. Yu, J. Liu, J. Zhang, J. Wu, Mater. Lett. 60 (2006) 206-209CrossRefGoogle Scholar
  13. 13.
    D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, Mater. Sci. Eng. A, 459 (2007) 262-272CrossRefGoogle Scholar
  14. 14.
    S. Shim, H. Bei, M. K. Miller, G. M. Pharr, E. P. George, Acta Mater., 57 (2009) 503-510CrossRefGoogle Scholar
  15. 15.
    Z. Shan, R. Mishra, S. Asif, O. Warren, and A. Minor, Nature Mater. 7, (2008) 115-119CrossRefGoogle Scholar
  16. 16.
    A.T. Jennings, M. J. Burek, J. R. Greer, Phys. Rev. Lett. 104 (2010) 135503CrossRefGoogle Scholar
  17. 17.
    H. Bei, S. Shim, G.M. Pharr, E.P. George. Acta Mater. 56 (2008) 4762-4770CrossRefGoogle Scholar
  18. 18.
    J. A. El-Awady, C. Woodward, D. M. Dimiduk, N. M. Ghoniem, Phys Rev B 80 (2009)104104CrossRefGoogle Scholar
  19. 19.
    A.S. Schneider, D.Kiener, C.M.Yakacki, H.J.Maier, P.A.Gruber, N.Tamura, M.Kunz, A.M. Minor, C.P.Frick, Mater. Sci. Eng. A 559 (2013) 147–158CrossRefGoogle Scholar
  20. 20.
    J. A. El-Awady, Nature Communications 6 (2015) 5926CrossRefGoogle Scholar
  21. 21.
    N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hucthinson, Acta Metall. Mater., 42 (1994) 475-487CrossRefGoogle Scholar
  22. 22.
    D. Liu, Y. He, D. J. Dunstan, B. Zhang, Z. Gan, P. Hu, H. Ding, Int J Plasticity, 41 (2013) 30-52CrossRefGoogle Scholar
  23. 23.
    W. D. Nix, H. Gao, J. Mech. Phys. Solids., 46 (1998) 411-425CrossRefGoogle Scholar
  24. 24.
    A. G. Evans, J. W. Hutchinson, Acta Mater., 57 (2009) 1675-1688CrossRefGoogle Scholar
  25. 25.
    M. Rester, C. Motz, R. Pippan, Acta Mater. 55 (2007) 6427-6435CrossRefGoogle Scholar
  26. 26.
    E. Demir, D. Raabe, N. Zaafarani, S. Zaefferer, Acta Mater. 57 (2009) 559-569CrossRefGoogle Scholar
  27. 27.
    M. F. Ashby, Phil Mag 21 (1970) 399CrossRefGoogle Scholar
  28. 28.
    R. W. Armstrong, J. Mech. Phys. Solids., 9 (1961) 196-199CrossRefGoogle Scholar
  29. 29.
    A. W. Thompson, Scr. Metall., 8 (1974) 145-148CrossRefGoogle Scholar
  30. 30.
    S. Miyazaki, K. Shibata, H. Fujita, Acta Metall., 27(1979) 855-862CrossRefGoogle Scholar
  31. 31.
    X. X. Chen, A. H. W. Ngan, Scr. Mater., 64 (2011) 717-720CrossRefGoogle Scholar
  32. 32.
    S. Chauhan, A. F. Bastawros, Appl. Phys. Lett., 93 (2008) 41901CrossRefGoogle Scholar
  33. 33.
    A. Molotnikov, R. Lapovok, C. H. J. Davies, W. Cao, Y. Estrin, Scr. Mater., 59 (2008) 1182-1185CrossRefGoogle Scholar
  34. 34.
    C. Y. Dai, G. P. Zhang, C. Yan, Phil. Mag., 91 (2011) 932-945CrossRefGoogle Scholar
  35. 35.
    B. Yang, C. Motz, M. Rester, G. Dehm, Phil. Mag. 92 (2012) 3243-3256CrossRefGoogle Scholar
  36. 36.
    L. Yang, L. Lu, Scr. Mater. 69 (2013) 242-245CrossRefGoogle Scholar
  37. 37.
    N. L. Okamoto, D. Kashioka, T. Hirato, H. Inui, Int. J. Plast.,56 (2014)173-183CrossRefGoogle Scholar
  38. 38.
    D. Jang, J. R. Greer, Scr. Mater., 64 (2011) 77-80CrossRefGoogle Scholar
  39. 39.
    C. Wang, C. Wang, B. Guo, D. Shan, G. Huang, Mater. Lett., 106 (2013) 294-296CrossRefGoogle Scholar
  40. 40.
    W. Gu, C. N. Loynachan, Z. Wu, Y. W. Zhang, D. J. Srolovitz, J. R. Greer, Nano Lett., 12 (2012) 6385-6392CrossRefGoogle Scholar
  41. 41.
    J.T. Fourie, Phil. Mag. 15 (1967) 187CrossRefGoogle Scholar
  42. 42.
    J.T. Fourie, Phil. Mag 17 (1968) 735CrossRefGoogle Scholar
  43. 43.
    H. Mughrabi, Phys. Stat. Sol., 39 (1970) 317-327CrossRefGoogle Scholar
  44. 44.
    H. Mughrabi, Phys. Stat. Sol., 44 (1971) 391-402CrossRefGoogle Scholar
  45. 45.
    J.Y. Zhang, X. Liang, P. Zhang, K. Wu, G. Liu, J. Sun, Acta Mater. 66 (2014) 302-316CrossRefGoogle Scholar
  46. 46.
    S. Nemat-Nasser, A. Maximenko, E. Olevsky, J. Mech. Phys. Solids, 54 (2006) 2474-2494CrossRefGoogle Scholar
  47. 47.
    H. D. Espinosa, B. C. Prorok, B. Peng, J. Mech. Phys. Solids, 52 (2004) 667- 689CrossRefGoogle Scholar
  48. 48.
    M. Lederer, V. Gröger, G. Khatibi, B. Weiss, Mat. Sci. Eng. A, 527 (2010) 590-599CrossRefGoogle Scholar
  49. 49.
    J. A. Grogan, S. B. Leen, P.E. McHugh, J. Mech. Behav. Biomed. Mater., 20 (2013) 61-76CrossRefGoogle Scholar
  50. 50.
    G. Ribárik: Ph.D. Thesis, Eötvös University, Budapest, 2008.
  51. 51.
    G. I. Taylor, J. Inst. Met., 62 (1938) 307-324Google Scholar
  52. 52.
    A. W. Thompson, Acta Metall., 23 (1975) 1337-1342CrossRefGoogle Scholar
  53. 53.
    T. Narutani, J. Takamura, Acta Metall. Mater., 39 (1991) 2037-2049CrossRefGoogle Scholar
  54. 54.
    I. Matsui, T. Uesugi, Y. Takigawa, K. Higashi, Acta Mater., 61 (2013) 3360-3369CrossRefGoogle Scholar
  55. 55.
    A.W. Thompson, A.I. Baskes, W.F. Flanagan, Acta Metall., 1973, vol. 21, pp. 1017–28CrossRefGoogle Scholar
  56. 56.
    U.F. Kocks, H. Mecking, Prog. Mater. Sci., 48 (2003) 171-273CrossRefGoogle Scholar
  57. 57.
    R.I. Barabash, E. Huang, J.J. Wall, J.H. Wilkerson, Y. Ren, W. Liu, S.C. Vogel, G.E. Ice, L.M. Pike, P.K. Liaw, Mater. Sci. Eng., 528 (2010) 3-10CrossRefGoogle Scholar
  58. 58.
    J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael. MRS Bull., 32 (2007) 400CrossRefGoogle Scholar
  59. 59.
    E.S. Lambers, C.N. Dykstal, J.M. Seo, J.E. Rowe, P.H. Holloway, Oxid. Met., 45 (1996) 301-321CrossRefGoogle Scholar
  60. 60.
    N. Warthi, P. Ghosh, A.H. Chokshi, Scripta Mater., 68 (2013) 225-228CrossRefGoogle Scholar
  61. 61.
    M.R. Notis, R.M. Spriggs and W.C. Hahn, J. Geophy. Res 76 (1971) 7052-7061CrossRefGoogle Scholar
  62. 62.
    Rinaldi, P. Peralta, K. Sieradzki, E. Traversa, S. Licoccia, J. Nanomech. Micromech. 2 (2012) 42-48CrossRefGoogle Scholar
  63. 63.
    D.J. Dunstan, A.J. Bushby, Int J Plasticity 40 (2013) 142-162CrossRefGoogle Scholar
  64. 64.
    D.J. Dunstan, A.J. Bushby, Int J Plasticity 53 (2014) 56-65CrossRefGoogle Scholar
  65. 65.
    L. Johnson, M. Ashby, Acta Metall. 16 (1968) 219–225CrossRefGoogle Scholar
  66. 66.
    P.J. Imrich, C. Kirchlechner, C. Motz, G. Dehm, Acta Mater. 73 (2014) 240-250CrossRefGoogle Scholar
  67. 67.
    M. Henning, H. Vehoff, Mater. Sci. Eng., A, 452-453 (2007) 602-613CrossRefGoogle Scholar
  68. 68.
    Y. Chen, O. Kraft and M. Walter, Acta Mater. 87 (2015) 78-85CrossRefGoogle Scholar
  69. 69.
    C. Keller, E. Hug, Mater, Lett., 62 (2008) 1718-1720CrossRefGoogle Scholar
  70. 70.
    C. Keller, E. Hug, D. Chateigner, Mater. Sci. Eng., A 500 (2009) 207-215CrossRefGoogle Scholar
  71. 71.
    H. Mughrabi, Acta Metall., 31 (1983) 1367-1379CrossRefGoogle Scholar
  72. 72.
    Q. Yu, R.K. Mishra, J.W. Morris Jr, A. M. Minor, Phil Mag. 94 (2014) 2062-2071CrossRefGoogle Scholar
  73. 73.
    A. M. Hussein, S.I. Rao, M.D. Uchic, D.M. Dimiduk, J.A. El-Awady, Acta Mater. 85 (2015) 180-190CrossRefGoogle Scholar
  74. 74.
    C.A. Bronkhorst, S.R. Kalidindi, L. Anand, Phil. Trans. R. Soc. Lond. A,341 (1992) 443-477CrossRefGoogle Scholar
  75. 75.
    A. Rinaldi, P. Peralta, C. Friesen, K. Sieradzki, Acta Mater., 56 (2008) 511-517CrossRefGoogle Scholar
  76. 76.
    Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitino, R. Radovitzky, Int. J. Plast., 24 (2008) 2278-2297CrossRefGoogle Scholar
  77. 77.
    B.C. Larson, J.Z. Tischler, A. El-Azab, W. Liu, J. Eng. Mater. Tech., 130 (2008) 021024CrossRefGoogle Scholar
  78. 78.
    P.A. Shade, M.A. Groeber, J.C. Schuren, M.D. Uchic, Integrating Mater. Manufacturing Innovations, 2 (2013) 5CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  1. 1.Erich Schmid Institute of Materials ScienceLeobenAustria
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations