Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 12, pp 6003–6017 | Cite as

Hot Tearing Susceptibility of Mg-Ca Binary Alloys

  • Jiangfeng SongEmail author
  • Zhi Wang
  • Yuanding Huang
  • Amirthalingam Srinivasan
  • Felix Beckmann
  • Karl Ulrich Kainer
  • Norbert Hort
Article

Abstract

Hot tearing is known as one of the most critical solidification defects commonly encountered during casting practice. As most Mg alloys are initially prepared by casting, ingots must have superior quality with no casting defects for the further processing. Due to the extensive potential biodegradable applications of binary Mg-Ca alloys, it is of great importance to investigate their hot tearing behavior. In the present study, the influence of Ca content (0.1, 0.2, 0.5, 1.0, and 2.0 wt pct) on hot tearing susceptibility (HTS) of Mg-Ca binary alloys was investigated using a constrained rod casting apparatus equipped with a load cell and data acquisition system. Tear volumes were quantified with 3D X-ray tomography. Results showed that the influence of Ca content on HTS followed a “Λ” shape: the HTS increased with increase in Ca content, reached a maximum at 0.5 to 1 wt pct Ca, and then decreased with further increasing the Ca content to 2.0 wt pct. The wide solidification range and reasonably high volume of intermetallic in the Mg-0.5 wt pct Ca and Mg-1 wt pct Ca alloys resulted in high HTS. Microstructure analysis suggested that the hot tear initiated at grain boundaries and propagated along them through thin film rupture or across the eutectic.

Keywords

Solid Fraction Thin Liquid Film Force Drop Peak Susceptibility Brittle Intermetallic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Mrs. P. Fischer, Mr. G. Meister, Mr. G. Wiese for their technical support and Dr. F. D’Elia for his English corrections and scientific discussion. Financial support from China Scholarship Council (CSC) for this work is also greatly appreciated.

References

  1. 1.
    L. Katgerman and D.G. Eskin: Hot Cracking Phenomena in Welds II, Springer Berlin Heidelberg, Berlin, 2008, pp. 11-26.CrossRefGoogle Scholar
  2. 2.
    M.A. Easton, M.A. Gibson, S.M. Zhu, T.B. Abbott: Metall. Mater. Trans. A, 2014, vol 45, pp. 3586-95.CrossRefGoogle Scholar
  3. 3.
    Z. S. Zhen, N. Hort, Y. D. Huang, O. Utke, N. Petri and K. U. Kainer: Int. J. Cast. Metal. Res., 2009, vol. 22, pp. 331-34.CrossRefGoogle Scholar
  4. 4.
    G. Cao, C. Zhang, H. Cao, Y. A. Chang and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41, pp. 706-16.CrossRefGoogle Scholar
  5. 5.
    Z. S. Zhen, N. Hort, Y. D. Huang, N. Petri, O. Utke and K. U. Kainer: Mater. Sci. Forum., 2009, vol. 618-619, pp. 533-40.CrossRefGoogle Scholar
  6. 6.
    G. Cao and S. Kou: Mater. Sci. Eng. A, 2006, vol. 417, pp. 230-38.CrossRefGoogle Scholar
  7. 7.
    J. Z. Zhu, J. Guo and M. T. Samonds: Int. J. Numer. Meth. Eng., 2011, vol. 87, pp. 289-308.CrossRefGoogle Scholar
  8. 8.
    Z. Wang, Y. D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K. U. Kainer and N. Hort: Mater. Design. 2013, vol. 47, pp. 90-100.CrossRefGoogle Scholar
  9. 9.
    A. Srinivasan, Z. Wang, Y. D. Huang, F. Beckmann, K. U. Kainer and N. Hort: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2285-98.CrossRefGoogle Scholar
  10. 10.
    W. Zheng, S. Li, B. Tang, D. Zeng and X. Guo: J. Rare Earth, 2006, vol. 24, pp. 346-51.CrossRefGoogle Scholar
  11. 11.
    Y. Wang, Q. Wang, G. Wu, Y. Zhu and W. Ding: Mater. Lett., 2002, vol. 57, pp. 929-34.CrossRefGoogle Scholar
  12. 12.
    S Li, B. Tang, X. Jin and D. Zeng: J. Mater. Sci., 2011, vol. 47, pp. 2000-04.CrossRefGoogle Scholar
  13. 13.
    B.R. Powell, A.A. Luo, B.L. Tiwari, and V. Rezhets: TMS, 2002, pp. 123–29.Google Scholar
  14. 14.
    G. Cao and S. Kou: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3647-63.CrossRefGoogle Scholar
  15. 15.
    G G. Cao, I. Haygood and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2139-50.CrossRefGoogle Scholar
  16. 16.
    L. Zhou, Y. D. Huang, P. L. Mao, K. U. Kainer, Z. Liu, and N. Hort: TMS, 2011, pp. 125–30.Google Scholar
  17. 17.
    L. Zhou: Thesis, Shenyang University of Technology, Shenyang, 2011, pp. 150.Google Scholar
  18. 18.
    Q. D. Wang, W. D. Chen, X. Q. Zeng, Y. Z. Lu, W. J. Ding, Y. P. Zhu, X. P. Xu and M. Mabuchi: J. Mater. Sci., 2001, vol. 36, pp. 3035-40.CrossRefGoogle Scholar
  19. 19.
    A. A. Luo, M. P. Balogh and B. R. Powell: Metall. Mater. Trans. A, 2002, vol. 33, pp. 567-74.CrossRefGoogle Scholar
  20. 20.
    W.-C. Kim, J.-G. Kim, J.-Y. Lee, H.-K. Seok: Mater. Lett., 2008, vol. 62, pp. 4146-48.CrossRefGoogle Scholar
  21. 21.
    X. Gao, S.M. Zhu, B. C. Muddle, J. F. Nie: Scripta Mater, 2005, vol. 53, pp. 1321-1326.CrossRefGoogle Scholar
  22. 22.
    J. F. Nie, B. C. Muddle: Scripta Mater, 1997, vol. 37, pp. 1475-1481.CrossRefGoogle Scholar
  23. 23.
    Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang and X. Zhou: Mater. Design., 2008, vol. 29, pp. 2034-37.CrossRefGoogle Scholar
  24. 24.
    H.Y. Tok, E. Hamzah, and H.R. Bakhsheshi-Rad: J. Alloy. Compd., 2015, vol. 640, pp. 335-46.CrossRefGoogle Scholar
  25. 25.
    M. Easton, J. Grandfield, D. StJohn and B. Rinderer: Mater. Sci. Forum., 2006, vol. 519-521, pp. 1675-80.CrossRefGoogle Scholar
  26. 26.
    M. Easton, H. Wang, J. Grandfield, D. StJohn and E. Sweet: Mater. Forum.,, 2004, vol. 28, pp. 224-29.Google Scholar
  27. 27.
    S.M. Li, K. Sadayappan, D. Apelian: Metall. Mater. Trans. B,, 2013, vol 44, pp. 614-23.CrossRefGoogle Scholar
  28. 28.
    S. E. Harandi, M. Mirshahi, S. Koleini, M. H. Idris, H. Jafari and M. R. A. Kadir: Mater. Res., 2013, vol. 16, pp. 11-18.CrossRefGoogle Scholar
  29. 29.
    Y. C. Lee, A. K. Dahle and D. H. StJohn: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2895-906.CrossRefGoogle Scholar
  30. 30.
    T.W.Clyne and G.J.Davies: Brit. Foundryman, 1981, vol. 74, pp. 65-73.Google Scholar
  31. 31.
    L. Zhou, Y. D. Huang, P. L. Mao, K. U. Kainer, Z. Liu and N. Hort: Int. J. Cast. Metal. Res., 2011, vol. 24, pp. 170-76.CrossRefGoogle Scholar
  32. 32.
    Z.S Zhen, N. Hort, O. Utke, Y.D. Huang, N. Petri, and K.U. Kainer: TMS, 2009, pp 105–10.Google Scholar
  33. 33.
    P. Gunde, A. Schiffl, P.J. Uggowitzer: Mater. Sci. Eng. A, 2010, vol 527, pp. 7074-79.CrossRefGoogle Scholar
  34. 34.
    D.G. Eskin, L. Katgerman: Metall Mat Trans A, 2007, vol 38, pp. 1511-19.CrossRefGoogle Scholar
  35. 35.
    L. Sweet, M.A. Easton, J.A. Taylor, J.F. Grandfield, C.J. Davidson, L.M. Lu, M.J. Couper, and D.H. Stjohn: Metall and Mat Trans A, 2013, vol 44, pp. 5396-407.CrossRefGoogle Scholar
  36. 36.
    M. Salahshoor and Y. B. Guo: Materials, 2012, vol. 5, pp. 135-55.CrossRefGoogle Scholar
  37. 37.
    I. Antoniac and M. Dinu: E-Health and Bioengineering Conference (EHB), 2011, pp. 1–4.Google Scholar
  38. 38.
    Z. J. Li, X. N. Gu, S. Q. Lou and Y. F. Zheng: Biomaterials, 2008, vol. 29, pp. 1329-44.CrossRefGoogle Scholar
  39. 39.
    Y. S. Jeong and W. J. Kim: Corros. Sci., 2014, vol. 82, pp. 392-403.CrossRefGoogle Scholar
  40. 40.
    J. F. Grandfield, D. G. Eskin and I. F. Brainbridge: Direct-chill casting of light alloys, Wiley, New Jersey, 2013, pp. 173-204.CrossRefGoogle Scholar
  41. 41.
    Suyitno, D. G. Eskin and L. Katgerman: Mater. Sci. Eng. A, 2006, vol. 420, pp. 1-7.CrossRefGoogle Scholar
  42. 42.
    Y. D. Huang, Z. Wang, A. Srinivasan, K. U. Kainer and N. Hort: Acta. Phys. Pol. A, 2012, vol. 122, pp. 497-500.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Jiangfeng Song
    • 1
    Email author
  • Zhi Wang
    • 1
    • 2
  • Yuanding Huang
    • 1
  • Amirthalingam Srinivasan
    • 1
    • 3
  • Felix Beckmann
    • 1
  • Karl Ulrich Kainer
    • 1
  • Norbert Hort
    • 1
  1. 1.Institute of Materials ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.School of Materials Science and EngineeringShenyang University of TechnologyShenyangChina
  3. 3.CSIR-National Institute for Interdisciplinary Science and Technology (NIIST)TrivandrumIndia

Personalised recommendations