Metallurgical and Materials Transactions A

, Volume 46, Issue 12, pp 5887–5899 | Cite as

An In Situ Study of Sintering Behavior and Phase Transformation Kinetics in NiTi Using Neutron Diffraction

  • Gang Chen
  • Klaus-Dieter Liss
  • Peng Cao


The powder sintering behavior of NiTi from an elemental powder mixture of Ni/Ti has been investigated, using an in situ neutron diffraction technique. In the sintered alloys, the overall porosity ranges from 9.2 to 15.6 pct, while the open-to-overall porosity ratio is between 8.3 and 63.7 pct and largely depends on the sintering temperature. In comparison to powder compacts sintered at 1223 K and 1373 K (950 °C and 1100 °C), the powder compact sintered at 1153 K (880 °C) shows a much smaller pore size, a higher open-to-overall porosity ratio but smaller shrinkage and a lower density. Direct evidence of eutectoid transformation in the binary Ni-Ti system during furnace cooling to ca. 890 K (617 °C) is provided by in situ neutron diffraction. The intensities of the B2-NiTi reflections decrease during the holding stage at 1373 K (1100 °C), which has been elaborated as an extinction effect according to the dynamical theory of neutron diffraction, when distorted crystallites gradually recover to perfect crystals. The analysis on the first five reflections clarifies the non-existence of any order–disorder transition in the NiTi phase from B2-to-BCC structure.


Neutron Diffraction Ni3Ti NiTi Alloy Superlattice Reflection Disorder Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the financial support from Ministry of Business Innovation and Employment (MBIE), New Zealand. Gang Chen acknowledges the China Scholarship Council (CSC) for providing his doctoral scholarship. We also appreciate the support of the Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO) and Australian Institute of Nuclear Science and Engineering (AINSE) Ltd for providing the beamtime and financial assistance (Award No.: P2716) for the neutron diffraction work conducted on the WOMBAT instrument. We also appreciate the funding from Shaanxi Science and Technology Co-ordination and Innovation Project (No.: 2014KTZB01-02-04).


  1. 1.
    Yamauchi K, Ohkata I, Tsuchiya K, Miyazaki S. Shape memory and superelastic alloys: technologies and applications. Cambridge, U.K.: Woodhead Publishing, 2011.CrossRefGoogle Scholar
  2. 2.
    Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. Progress in materials science 2012;57:911–46.CrossRefGoogle Scholar
  3. 3.
    Cluff D, Corbin SF. Intermetallics 2010;18:1480–90.CrossRefGoogle Scholar
  4. 4.
    Yen F-C, Hwang K-S. Metallurgical and Materials Transactions A 2012;43:687–96.CrossRefGoogle Scholar
  5. 5.
    Zhu SL, Yang XJ, Fu DH, Zhang LY, Li CY, Cui ZD. Materials Science and Engineering: A 2005;408:264–68.CrossRefGoogle Scholar
  6. 6.
    Chen G, Cao P, Edmonds N. Materials Science and Engineering: A 2013;582:117–25.CrossRefGoogle Scholar
  7. 7.
    Majima K, Sohama Y. Journal of the Japan Society of Powder and Powder Metallurgy 1982;29:127–32.CrossRefGoogle Scholar
  8. 8.
    Igharo M, Wood JV. Powder Metallurgy 1985;28:131–39.CrossRefGoogle Scholar
  9. 9.
    Kuroki H, Nishio M, Matsumoto C. Journal of the Japan Society of Powder and Powder Metallurgy 1989;36:701–06.CrossRefGoogle Scholar
  10. 10.
    Panigrahi BB, Godkhindi MM. Intermetallics 2006;14:130–35.CrossRefGoogle Scholar
  11. 11.
    Li B-Y, Rong L-J, Li Y-Y. Materials Science and Engineering: A 2000;281:169–75.CrossRefGoogle Scholar
  12. 12.
    Tang CY, Zhang LN, Wong CT, Chan KC, Yue TM. Materials Science and Engineering: A 2011;528:6006–11.CrossRefGoogle Scholar
  13. 13.
    Whitney M, Corbin SF, Gorbet RB. Intermetallics 2009;17:894–906.CrossRefGoogle Scholar
  14. 14.
    Li B-Y, Rong L-J, Li Y-Y. Intermetallics 2000;8:643–46.CrossRefGoogle Scholar
  15. 15.
    Chen G, Wen GA, Cao P, Edmonds N, Li YM. Powder Injection Moulding International 2012;6:83–88.Google Scholar
  16. 16.
    Chen G, Cao P. Metallurgical and Materials Transactions A 2013;44:5630–33.CrossRefGoogle Scholar
  17. 17.
    Chen G, Liss K-D, Cao P. Acta Materialia 2014;67:32–44CrossRefGoogle Scholar
  18. 18.
    G. Chen, K.-D. Liss, and P. Cao: TMS 2014 Supplemental Proceedings. Wiley, Hoboken, 2014, p. 967–73Google Scholar
  19. 19.
    G. Chen: Ph.D. Thesis, Department of Chemical and Materials Engineering, The University of Auckland, New Zealand, 2014Google Scholar
  20. 20.
    Chen G, Liss K-D, Cao P. Metals 2015;5:530–46.CrossRefGoogle Scholar
  21. 21.
    Zhang N, Babayan Khosrovabadi P, Lindenhovius JH, Kolster BH. Materials Science and Engineering: A 1992;150:263–70.CrossRefGoogle Scholar
  22. 22.
    Massalski TB, Okamoto H, Subramanian PR, Kacprzak L. Binary alloy phase diagrams. Materials Park, OH: ASM International, 1990.Google Scholar
  23. 23.
    Whitney M, Corbin SF, Gorbet RB. Acta Materialia 2008;56:559–70.CrossRefGoogle Scholar
  24. 24.
    German R, Suri P, Park S. Journal of Materials Science 2009;44:1–39.CrossRefGoogle Scholar
  25. 25.
    Honma T, Matsumoto M, Shugo Y, Nishida M. Research report of the laboratory of nuclear science. vol. 12. Berlin: Tohoku University, 1979. p.183.Google Scholar
  26. 26.
    Otsuka K, Ren X. Progress in Materials Science 2005;50:511–618.CrossRefGoogle Scholar
  27. 27.
    Zhang J, Fan G, Zhou Y, Ding X, Otsuka K, Nakamura K, Sun J, Ren X. Acta Materialia 2007;55:2897–905.CrossRefGoogle Scholar
  28. 28.
    K.-D. Liß: Ph.D. Thesis, RWTH Aachen, 1994Google Scholar
  29. 29.
    Kabra S, Yan K, Carr DG, Harrison RP, Dippenaar RJ, Reid M, Liss K-D. J. Appl. Phys. 2013;113:063513–18CrossRefGoogle Scholar
  30. 30.
    Darwin CG. Philosophical Magazine 1914;27A:315–33.CrossRefGoogle Scholar
  31. 31.
    Darwin CG. Philosophical Magazine 1922;43:800–29.CrossRefGoogle Scholar
  32. 32.
    Blackman M. Proceedings of the Royal Society 1939;173:68–82.CrossRefGoogle Scholar
  33. 33.
    Ewald P. Acta Crystallographica Section A 1969;25:103–08.CrossRefGoogle Scholar
  34. 34.
    A. Authier: in International Tables for Crystallography Volume B: Reciprocal Space, U. Shmueli, ed., Springer, Heidelberg, 2001, vol. B, p. 534–51.Google Scholar
  35. 35.
    Studer AJ, Hagen ME, Noakes TJ. Physica B: Condensed Matter 2006;385–386, Part 2:1013–15.CrossRefGoogle Scholar
  36. 36.
    Rietveld H. Journal of Applied Crystallography 1969;2:65–71.CrossRefGoogle Scholar
  37. 37.
    Honjo G, Kitamura N. Acta Crystallographica 1957;10:533–34.CrossRefGoogle Scholar
  38. 38.
    Cooper MJ, Rouse KD. Acta Crystallographica Section A 1970;26:214–23.CrossRefGoogle Scholar
  39. 39.
    V.F. Sears: in International Tables for Crystallography, E. Prince, ed., International Union of Crystallography, Chester, 2006. p. 444.Google Scholar
  40. 40.
    R.W. Waschowski: Landolt-Börnstein, H. Schopper, ed., Springer, Berlin, 2000.Google Scholar
  41. 41.
    Zhao X, Liu Y, Wang Y, Feng P, Tang H. Metallurgical and Materials Transactions A 2014;45A:3446–53.CrossRefGoogle Scholar
  42. 42.
    Duwez P, Taylor JL. Trans. AIME 1950;188:1173–76.Google Scholar
  43. 43.
    D.M. Poole and W. Hume-Rothery: J. Inst. Met., 1954–1955, vol. 83, p. 473–80.Google Scholar
  44. 44.
    Gupta SP, Mukherjee K, Johnson AA. Mater. Sci. Eng. 1973;11:283–97.CrossRefGoogle Scholar
  45. 45.
    Liss K-D, Bartels A, Schreyer A, Clemens H. Textures and Microstructures 2003;35:219–52.CrossRefGoogle Scholar
  46. 46.
    Yan K, Carr DG, Kabra S, Reid M, Studer A, Harrison RP, Dippenaar R, Liss K-D. World Journal of Engineering 2010;7:422–23.Google Scholar
  47. 47.
    Yan K, Carr GD, Kabra S, Reid M, Studer A, Harrison RP, Dippenaar R, Liss K-D. Advanced Engineering Materials 2011;13: 882–86.CrossRefGoogle Scholar
  48. 48.
    D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science, Springer, New York, 2009.CrossRefGoogle Scholar
  49. 49.
    Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G. Acta Materialia 2010;58:1850–60.CrossRefGoogle Scholar
  50. 50.
    Chumlyakov Y, Surikova NS, Korotaev AD. Physics of metals and metallography 1996;82:102–09.Google Scholar
  51. 51.
    Aydoğmuş T, Bor Ş. Metallurgical and Materials Transactions A 2012;43:5173–81.Google Scholar
  52. 52.
    Bastin G, Rieck G. Metallurgical and Materials Transactions B 1974;5:1827–31.CrossRefGoogle Scholar
  53. 53.
    German RM. Powder Metallurgy Science. Princeton: Metal Powder Industries Federation, 1998.Google Scholar
  54. 54.
    Taupin D. Bulletin De La Societe Francaise Mineralogie Et De Cristallographie 1964;87:469–511.Google Scholar
  55. 55.
    Takagi S. Journal of the Physical Society of Japan 1969;26:1239–53.CrossRefGoogle Scholar
  56. 56.
    H. Rauch and D. Petrascheck: in Neutron Diffraction, H. Dachs, ed., Springer-Verlag, Berlin, 1978.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand
  2. 2.State Key Laboratory of Porous Metal MaterialsNorthwest Institute for Nonferrous Metal ResearchXi’anP.R. China
  3. 3.Australian Nuclear Science and Technology OrganisationLucas HeightsAustralia
  4. 4.Quantum Beam Science DirectorateJapan Atomic Energy AgencyNaka-gunJapan

Personalised recommendations