Metallurgical and Materials Transactions A

, Volume 46, Issue 12, pp 5877–5886 | Cite as

Two-Step SPD Processing of a Trimodal Al-Based Nano-Composite

  • Yuzheng Zhang
  • Shima Sabbaghianrad
  • Hanry Yang
  • Troy D. Topping
  • Terence G. Langdon
  • Enrique J. Lavernia
  • Julie M. Schoenung
  • Steven R. Nutt
Article

Abstract

An ultrafine-grained (UFG) aluminum nano-composite was fabricated using two severe plastic deformation steps: cryomilling of powders (and subsequent consolidation of blended powders by forging) followed by high-pressure torsion (HPT). The forged bulk composite featured a trimodal structure comprised of UFG, coarse grain (CG) regions, and ceramic particles. The additional HPT processing introduced finer grain sizes and altered the morphology and spatial distribution of the ductile CG regions. As a result, both strength and ductility increased substantially compared to those of the Al nano-composite prior to HPT. The increases were attributed to the more optimal shape and spacing of the CG regions which promoted uniform elongation and yielding during tensile loading. Microstructural changes were characterized at each processing step to establish the evolution of microstructure and to elucidate structure-property relationships. The toughening effect of the CG regions was documented via fracture analysis, providing a potential strategy for designing microstructures with enhanced strength and toughness.

References

  1. 1.
    R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci., vol. 45, no. 2, pp. 103–189, Mar. 2000.CrossRefGoogle Scholar
  2. 2.
    R. Kapoor and J. K. Chakravartty, Acta Mater., vol. 55, pp. 5408–5418, 2007.CrossRefGoogle Scholar
  3. 3.
    T. G. Langdon, Acta Mater., vol. 61, no. 19, pp. 7035–7059, 2013.CrossRefGoogle Scholar
  4. 4.
    T. G. Langdon, Mech. Mater., vol. 67, pp. 2–8, 2013.CrossRefGoogle Scholar
  5. 5.
    Y. Huang and T. G. Langdon, Mater. Today, vol. 16, no. 3, pp. 85–93, 2013.CrossRefGoogle Scholar
  6. 6.
    L. S. Toth and C. Gu, Mater. Charact., vol. 92, pp. 1–14, 2014.CrossRefGoogle Scholar
  7. 7.
    R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, Y. T. Zhu, JOM, vol. 58, no. 4, pp. 33-39, 2006.CrossRefGoogle Scholar
  8. 8.
    E.O. Hall, Proc. Phys. Soc., vol. B64, pp. 747-753, 1951.CrossRefGoogle Scholar
  9. 9.
    N.J. Petch, J. Iron Steel Inst., vol. 174, pp. 25-28, 1953.Google Scholar
  10. 10.
    Y.T. Zhu and T.G. Langdon, JOM, vol. 56 (10), pp. 58-63, 2004.CrossRefGoogle Scholar
  11. 11.
    Y.T. Zhu, T.C. Lowe, T.G. Langdon, Scripta Mater., vol. 51, pp. 825-830, 2004.CrossRefGoogle Scholar
  12. 12.
    R.Z. Valiev, A.P. Zhilyaev, and T.G. Langdon: Bulk Nanostructured Materials: Fundamentals and Applications. Wiley, Hoboken, 2014.Google Scholar
  13. 13.
    A. P. Newbery, S. R. Nutt, and E. J. Lavernia, JOM, vol. 58 (4), pp. 56–61, 2006.CrossRefGoogle Scholar
  14. 14.
    A. P. Newbery, B. Ahn, T. D. Topping, P. S. Pao, S. R. Nutt, and E. J. Lavernia, J. Mater. Process. Technol., vol. 203 (1-3), pp. 37–45, Jul. 2008.CrossRefGoogle Scholar
  15. 15.
    D. Witkin, B.Q. Han, and E.J. Lavernia, Metall. Mater. Trans. A, vol. 37A, pp. 185–194, 2006.CrossRefGoogle Scholar
  16. 16.
    D. B. Witkin and E. J. Lavernia, Prog. Mater. Sci., vol. 51, no. 1, pp. 1–60, Jan. 2006.CrossRefGoogle Scholar
  17. 17.
    R. W. Hayes, P. B. Berbon, and R. S. Mishra, Metall. Mater. Trans. A, vol. 35A (12), pp. 3855–3861, 2004.CrossRefGoogle Scholar
  18. 18.
    O. Susegg, Micron and Microscopica Acta, vol. 23(1/2), pp. 223-224, 1992.CrossRefGoogle Scholar
  19. 19.
    Y. Li, W. Liu, V. Ortalan, W. F. Li, Z. Zhang, R. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, Acta Mater., vol. 58 (5), pp. 1732–1740, 2010.CrossRefGoogle Scholar
  20. 20.
    G. J. Fan, H. Choo, P. K. Liaw, and E. J. Lavernia, Acta Mater., vol. 54, no. 7, pp. 1759–1766, Apr. 2006.CrossRefGoogle Scholar
  21. 21.
    Z. Lee, V. Radmilovic, B. Ahn, E. J. Lavernia, and S. R. Nutt, Metall. Mater. Trans. A, vol. 41, no. 4, pp. 795–801, Oct. 2009.Google Scholar
  22. 22.
    Z. Lee, D. B. Witkin, V. Radmilovic, E. J. Lavernia, and S. R. Nutt, Mater. Sci. Eng. A, vol. 410–411, pp. 462–467, Nov. 2005.CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, T. D. Topping, E. J. Lavernia, and S. R. Nutt, Metall. Mater. Trans. A, vol. 45, no. 1, pp. 47–54, May 2013.Google Scholar
  24. 24.
    L. Jiang, K. Ma, H. Yang, M. Li, E. J. Lavernia, and J. M. Schoenung, JOM, vol. 66, no. 6, pp. 898–908, Apr. 2014.CrossRefGoogle Scholar
  25. 25.
    Z. Zhang, T. D. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J. M. Schoenung, and E. J. Lavernia, Scr. Mater., vol. 65, no. 8, pp. 652–655, Oct. 2011.CrossRefGoogle Scholar
  26. 26.
    J. Ye, B. Q. Han, Z. Lee, B. Ahn, S. R. Nutt, and J. M. Schoenung, Scr. Mater., vol. 53, no. 5, pp. 481–486, Sep. 2005.CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, T. D. Topping, H. Yang, E. J. Lavernia, J. M. Schoenung, and S. R. Nutt, Metall. Mater. Trans. A, vol. 46, pp. 1196–1204, 2015.CrossRefGoogle Scholar
  28. 28.
    D. C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M. D. Demetriou, and W. L. Johnson, Nature, vol. 451, no. 7182, pp. 1085–9, Feb. 2008.CrossRefGoogle Scholar
  29. 29.
    A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci., vol. 53, pp. 893-979, 2008.CrossRefGoogle Scholar
  30. 30.
    R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch, B. Baudelet, Acta Mater., vol. 44, pp. 4705-4712, 1996.CrossRefGoogle Scholar
  31. 31.
    F. Wetscher, A. Vorhauer, R. Stock, R. Pippan, Mater. Sci. Eng. A, vol. 387-389, pp. 809-816, 2004.CrossRefGoogle Scholar
  32. 32.
    Y. Li, Z. Zhang, R. Vogt, J. M. Schoenung, and E. J. Lavernia, Acta Mater., vol. 59, no. 19, pp. 7206–7218, Nov. 2011.CrossRefGoogle Scholar
  33. 33.
    L. Hashemi-Sadraei, S. E. Mousavi, R. Vogt, Y. Li, Z. Zhang, E. J. Lavernia, and J. M. Schoenung, Metall. Mater. Trans. A, vol. 43 (2), pp. 747–756, 2012.CrossRefGoogle Scholar
  34. 34.
    Y. Zhu, D. A. Cullen, S. Kar, M. L. Free, and L. F. Allard, Metall. Mater. Trans. A, vol. 43, no. 13, pp. 4933–4939, Aug. 2012.CrossRefGoogle Scholar
  35. 35.
    S. Jain, M. L. C. Lim, J. L. Hudson, and J. R. Scully, Corros. Sci., vol. 59, no. 2012, pp. 136–147, Jun. 2012.CrossRefGoogle Scholar
  36. 36.
    I. N. A. Oguocha, O. J. Adigun, and S. Yannacopoulos, J. Mater. Sci., vol. 43, no. 12, pp. 4208–4214, Apr. 2008.CrossRefGoogle Scholar
  37. 37.
    R. Z. Valiev and I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, J. Mater. Res., vol. 17, no. 1, pp. 5–8, 2002.CrossRefGoogle Scholar
  38. 38.
    T. Mungole, P. Kumar, M. Kawasaki, and T. G. Langdon, J. Mater. Res., vol. 29, no. 21, pp. 2534–2546, Oct. 2014.CrossRefGoogle Scholar
  39. 39.
    T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Sci., vol. 50, pp. 3549-3561, 2015.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Yuzheng Zhang
    • 1
  • Shima Sabbaghianrad
    • 1
  • Hanry Yang
    • 2
  • Troy D. Topping
    • 2
    • 3
  • Terence G. Langdon
    • 1
    • 4
  • Enrique J. Lavernia
    • 2
  • Julie M. Schoenung
    • 2
  • Steven R. Nutt
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of California, DavisDavisUSA
  3. 3.Department of Mechanical EngineeringCalifornia State University, SacramentoSacramentoUSA
  4. 4.Materials Research Group, Faculty of Engineering and EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations