Skip to main content
Log in

Changes in Microstructural and Mechanical Properties of AISI Type 316LN Stainless Steel and Modified 9Cr-1Mo Steel on Long-Term Exposure to Flowing Sodium in a Bi-Metallic Sodium Loop

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AISI Type 316LN stainless steel (SS) and modified 9Cr-1Mo steel were exposed to flowing sodium at 798 K (525 °C) for 30000 hours in a bi-metallic sodium loop. The changes in microchemical, microstructural, and mechanical properties were evaluated and compared with the as-received and thermally aged specimens. Effective carbon diffusion coefficient \( {\left( {D_{\text{C}}^{\text{eff}} } \right)} \) was calculated to be 6.8 × 10−19 m2/s. Depth of carburization analyzed by secondary ion mass spectroscopy technique was around 100 µm for sodium-exposed 316LN SS. Selective leaching of nickel occurred across depth from the surface of sodium-exposed 316LN SS with the formation of 10 µm ferrite layer, and it showed an increase in yield strength by 15 pct, reduction in ductility by 60 pct, and a decrease in impact energy by 15 pct vis-a-vis the as-received and thermally aged specimens. This reduction in ductility occurred due to extensive precipitation of sigma phase as a result of long-term thermal aging. No significant changes were observed in the sodium/modified 9Cr-1Mo steel interfacial microstructure as well as tensile properties of sodium-exposed modified 9Cr-1Mo steel. Although modified 9Cr-1Mo neither showed carburization nor decarburization on sodium exposure, it showed a drastic reduction in the impact strength, which was attributed to the presence of Laves phase, observed in X-ray diffraction patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.U. Borgstedt and C.K. Mathews: Applied Chemistry of Alkali Metals, Plenum Press, New York, 1987, pp. 6-19.

    Google Scholar 

  2. A.V. Karpov, M.Kh. Kononyuk, L.I. Mamaev and Yu.L. Kulikov: Atomic Energy, 2001,vol. 91, pp. 951-955.

    Article  Google Scholar 

  3. V.N. Golovanov, V.K. Shmardin, V.I. Prokhorov, V.S. Neustroev, V.A. Kazakov, G.P. Kobylyanskii, A.M. Pecherin, A.V. Povstyanko, T.M. Bulanova, V.A. Krasnoselov and A.E. Fedoseev: Atomic Energy, 2001, vol. 91, pp. 937-950.

    Article  Google Scholar 

  4. Vaidehi Ganesan, V. Ganesan and H.U. Borgstedt: J. Nucl. Mater., 2003, vol. 312, pp. 174-180.

    Article  Google Scholar 

  5. A.R. Keeton and C. Bagnall: in Proc. Second Int. Conf. on liquid Metal Technology in Energy Production, CONF-800401-P1, Richland, Washington, 1980, pp. 7–18.

  6. S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje: Proc. Materials R&D for PFBR, Selection of Materials for Fast Breeder Reactor, IGCAR, Kalpakkam, 2003, pp. 9–43.

  7. S.P. Awasthi and H.U. Borgstedt: J. Nucl. Mater., 1983, vol. 116, pp. 103-111.

    Article  Google Scholar 

  8. A.M. Azad, O.M. Sreedharan, and J.B. Gnanamoorthy: J. Nucl. Mater., 1987, vol. 144, pp. 94–104.

    Article  Google Scholar 

  9. A.M. Azad, O.M. Sreedharan and J.B. Gnanamoorthy: J. Nucl. Mater.,1998, vol. 151, pp. 292-300.

    Google Scholar 

  10. C.K. Mathews, T. Gnanasekharan and S. Rajendran Pillai: Trans. Indian Inst. Met., 1987, vol. 40, pp. 89-103.

    Google Scholar 

  11. K. Natesan, Meimei Li, O.K. Chopra and S. Majumdar: J. Nucl. Mater., 2009, vol. 392, pp. 243-248.

    Article  Google Scholar 

  12. K. Natesan, T.F. Kassner, and C-Y. Li: React. Technol., 1972–1973, vol. 15, pp. 244–76.

  13. T. Suzuki, I. Mutoh, T. Yagiant and Y. Ikenaga: J. Nucl. Mater., 1986, vol. 139, pp. 97-105.

    Article  Google Scholar 

  14. G.J. Lloyd: At. Energy Rev., 1978, vol. 16, pp. 155 -161.

    Google Scholar 

  15. Y. Wada, T. Asagama, and R. Komine: International Working Group on Fast Reactors, KFK-4935, H.U. Borgstedt, eds., Karlsruhe, 1991, pp. 149–159.

  16. H.U. Borgstedt and H. Huthmann: J.Nucl. Mater., 1991, vol. 183, pp. 127-131.

    Article  Google Scholar 

  17. Takushi Ito, Syoichi Kato, Masanori Aoki, Eiichi Yoshida, Toshimi Kobayashi and Yusaku Wada: J. Nucl. Sci. and Technol, 1992, vol. 29, pp. 367-377.

    Article  Google Scholar 

  18. N. SivaiBharasi, K. Thyagarajan, H. Shaikh, M. Radhika, A.K. Balamurugan, S. Venugopal, A. Moitra, S. Kalavathy, S. Chandramouli, A.K. Tyagi, R.K. Dayal, and K.K. Rajan: Metall. Mater. Trans A, 2012, vol. 43, pp 561–71.

    Article  Google Scholar 

  19. M.G. Pujar, N. Parvathavarthini, R.K. Dayal: Matrl.Chem. Phy., 2010,vol.123, pp. 407-416.

    Article  Google Scholar 

  20. M. Rosso, I. Peter and D. Suani: 2013, vol. 59, pp. 26-36.

    Google Scholar 

  21. H.U. Borgstedt: J. Nucl. Mater., 2003, vol. 317, pp. 160–166.

    Article  Google Scholar 

  22. J. Crank: Mathematics of Diffusion, Oxford University Press, Oxford, 1957, p. 32

    Google Scholar 

  23. ASTM E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2013, pp. 1–28.

  24. ASTM E-23c-12c, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, 2013, pp. 1–25.

  25. N. SivaiBharasi, K. Thyagarajan, H. Shaikh, A. K. Balamurugan, S. Bera, S. Kalavathy, K. Gurumurthy, R.K. Dayal, K.K. Rajan, and H.S. Khatak: J. Nucl. Mater., 2008, vol. 377, pp. 378–84.

    Article  Google Scholar 

  26. S. RajendranPillai, N. SivaiBharasi, H.S. Khatak, A.L.E. Terrance, R.D. Kale, M. Rajan, and K.K. Rajan: J. Mater. Eng. Perform. 2000, vol. 9, pp. 98–102.

    Article  Google Scholar 

  27. S. RajendranPillai, H.S. Khatak, and J.B. Gnanamoorthy: JIM, 1998, vol. 39, pp. 370–77.

    Article  Google Scholar 

  28. S. RajendranPillai, H. S. Khatak, N. SivaiBharasi, A.K. Tyagi, J.B. Gnanamoorthy, R.D. Kale: Trans. Ind. Inst. Met., 1997, vol. 50, pp. 103–10.

    Google Scholar 

  29. V. ThomasPaul, S. Saroja, M. Vijayalakshmi: J. Nucl Mater, 2008, vol. 378, pp. 273–81.

    Article  Google Scholar 

  30. B.G. Gieseke, C.R. Brinkman, and P.J. Maziasz: Conf. on Microstructure and Mechanical Properties of Aging Materials, MI (US) CONF-9211110-2, 1992, pp. 3–13.

  31. J.M. Vitek and R.L. Klueh: Metall. Trans. A, 1983, vol. 14, pp. 1047 – 1055.

    Article  Google Scholar 

  32. T. Suzuki, I. Mutoh: J. Nucl. Mater., 1989, vol. 165, pp. 83-83.

    Article  Google Scholar 

  33. T. D. Claar: Reactor Technol., 1970, vol. 3, pp. 124-146.

    Google Scholar 

  34. H.U. Borgstedt, G. Frees and H. Schneider: Nucl. Technol. 1977, vol. 34, pp. 290- 298.

    Google Scholar 

  35. Vaidehi Ganesan and Vedaraman Ganesan: J. Nucl. Mater., 1998, vol. 256, pp. 69-77.

    Article  Google Scholar 

  36. R.L. Miller, S.L. Schrock, and G.A. Whitlow: in Proceedings of the Third Annual Technical Meeting of the International Metallographic Society, Inc., K.A. Johnson, ed., Los Alamos, N. Mex. International Metallographic Society, I. Westinghouse Advanced Reactors Div., Madison, PA, 1971, pp. 105–14.

  37. R.P. Anantamula: J. Nucl. Mater., 1984, vol. 125, pp. 170-181.

    Article  Google Scholar 

  38. X.G. Tao, L. Zh. Han and J.F Gu: Mater. Sci. Eng. A, 2014, vol. 618, pp. 189–204.

    Article  Google Scholar 

  39. K. Tamaki and J. Suzuki: Res. Rep. Fac. Eng. Mie. Univ., 1982, vol 7, pp. 39-52.

    Google Scholar 

  40. A. Iseda, H. Teranishi and K. Yoshikawa: Tetsu-to-Hagane, 1990, vol.7, pp.2190-2197.

    Google Scholar 

  41. J.M. Vitek and S.A. David: Weld. J., 1986, vol. 65, pp. 106s–111s.

    Google Scholar 

  42. G.N. Emmanuel: Proc. Symp on Nature, Occurrence and Effects of Sigma Phase, ASTM Special Technical Publication No. 110, ASTM, Philadelphia, PA, 1951, p. 1.

  43. C. Bagnall and R.E. Witkowski, Microstmctural Sci. 6 (1978) 301.

    Google Scholar 

  44. A. F. Padilha and P. R. Rios, Decomposition of austenite in austenitic stainless steels, ISIJ International,vol.42,no.4, pp.325–337, 2002.

    Article  Google Scholar 

  45. B. Weiss and R. Stickler, Phase instabilities during high temperature exposure of 316 austenitic stainless steel, Acta Metallurgica, vol. 3, no. 4, pp. 851–866, 1972.

    Google Scholar 

  46. Y.S. Na, N.K. Park, and R.C. Reed, Sigma morphology and precipitation mechanism in Udimet 720Li,Scripta Materialia, vol. 43, no. 7, pp. 585–590, 2000.

    Article  Google Scholar 

  47. R.F.A. Jargelius-Petterson: Z. Metallkd., 1998, vol. 89, pp. 177–83.

    Google Scholar 

  48. K. Natesan and T.F. Kassner: J. Nucl. Mater., 1970, vol. 37, pp. 223-235.

    Article  Google Scholar 

  49. B. Longson and A. W. Thorley: J. Appl. Chemistry, 1970, vol. 20, pp. 370-379.

    Google Scholar 

  50. R. Ainsley, Linda P. Hartlib, P.M. Holroyd and G. Long: J. Nucl. Mater., 1974, vol. 52, pp. 255-276.

    Article  Google Scholar 

  51. D.C. Parris and R.B. McLellan: Acta Metall., 1976, vol. 24, pp. 523-528.

    Article  Google Scholar 

  52. P. Thibaux, A. Metenier, and C. Xhoffer: Metall. Trans A, 2007, vol. 38A, pp. 1169–76.

    Article  Google Scholar 

  53. T.S. Hummelshøj, T. Christiansen and MAJ Somers: Diffus. Defect Forum, 2008, vol. 273–276, pp. 306–11.

    Google Scholar 

  54. R.B. Snyder, K. Natesan and T.F. Kassner: J. Nucl. Mater., 1974, vol. 50,pp. 259-274.

    Article  Google Scholar 

  55. J. Gegner, A.A. Vasilyev, P.J. Wilbrandt, and M. Kaffenberger: Proceedings of MMT 2012 Conference, Paper 1, 2012, pp. 261–87.

  56. J. Čermák and L. Král: Metal, 2013, vol. 15, pp. 1–6.

    Google Scholar 

  57. O. K. Chopra, K. Natesan and T.F. Kassner: J Nucl Mat., 1981, vol. 6, pp. 269-284.

    Article  Google Scholar 

  58. A.A. Guimarães and P.R. Mei: J. Mater. Processing Techn., 2004, vol. 155–156, pp. 1681–1689.

    Article  Google Scholar 

  59. T. Gnanasekaran, R.K. Dayal, and B. Raj: in Nuclear Corrosion Science and Engineering, D. Feron, ed., Woodhead Publishing Limited, Cambridge, 2012, pp 301–28.

  60. K. Natesan, O.K. Chopra and T.F. Kassner: Nucl. Technol, 1976, vol. 28, pp. 441-451.

    Google Scholar 

  61. J.L. Krankota and J.S. Armijo: Nucl. Technol, 1974, vol. 24, pp. 225-233.

    Google Scholar 

  62. S. RajendranPillai, J.B. Gnanamoorthy, S. Velmurugan, A.K. Tyagi, R.D. Kale, K. Swaminathan, K.K. Rajan and M. Rajan: Mater. Sci. Technol., 1997, vol. 13, pp. 837–45.

    Google Scholar 

  63. D.W. Sandusky, J.S. Armijo, and W.J. Wagner: J. Nucl. Mater., 1973, vol. 46 pp. 225–43.

    Article  Google Scholar 

  64. C.L. Packard, M.C. Mataya, and C.M. Edstrom: DOE/TIC-4500 (Rev. 69), Rockwell International-Energy Systems Group, Golden, CO, 80401 Rocky Flats P, 1981, pp. 1–34.

  65. J. Lee, I. Kim, and A. Kimura: J. Nucl. Sci. Tech., 2003, vol. 40, pp. 664–671.

    Article  Google Scholar 

  66. V. Homolova, J. Janovec, P. Zahumensky and A. Vyrostkova: Mater. Sci. Eng. A, 2003, vol. 349, pp. 306-312.

    Article  Google Scholar 

  67. F.C. Hull: Welding journal, 1973, vol. 52(3), pp. 104s-113s.

    Google Scholar 

  68. L.R. Woodyatt, C.T. Sims, and H.M. Beltram, Prediction of Sigma-type phase occurrence from compositions in austenitic superalloys, Trans. Met. Soc. of AIME 235 (4), (1966) pp 523 – 532.

    Google Scholar 

  69. D.S. Wood: Proc. on Ferritic Steels for Fast Reactor Steam Generators, BNES, London, 1978, pp. 293–99.

  70. Y. Hosoi, N. Wade, S. Kunimitsu and T. Urita, J. Nucl. Mater., 1986, vol. 46, pp. 141-143.

    Google Scholar 

  71. C.R. Brinkman, B. Gieseke, and P.J. Maziasz: Proc. of the first int. Conf. on Microstructures and Mechanical Properties of Aging Materials, Chicago, IL, 1992, November 2–5, pp. 107–15.

  72. T. Tomita and M. Oku: Nissin Technical Report, 2006, vol. 87, pp. 11.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Smt. M. Radhika, ex-employee of PMG, IGCAR for her help in SEM and EDS analysis, Dr. S. Kalavathy, MSG for XRD studies and Smt. Alka, QAD, IGCAR for microhardness measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Pujar.

Additional information

Manuscript submitted February 28, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivai Bharasi, N., Pujar, M.G., Thyagarajan, K. et al. Changes in Microstructural and Mechanical Properties of AISI Type 316LN Stainless Steel and Modified 9Cr-1Mo Steel on Long-Term Exposure to Flowing Sodium in a Bi-Metallic Sodium Loop. Metall Mater Trans A 46, 6065–6080 (2015). https://doi.org/10.1007/s11661-015-3147-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3147-2

Keywords

Navigation