Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 12, pp 5514–5525 | Cite as

High Wear Resistance of White Cast Iron Treated by Novel Process: Principle and Mechanism

  • Xiaoshuai Jia
  • Xunwei Zuo
  • Yu Liu
  • Nailu Chen
  • Yonghua Rong
Article

Abstract

Based on microstructure desired, a novel process is proposed to treat Fe-2.4C-12.0Cr (mass pct) white cast iron balls, that is, destabilizing heat treatment following multicycle quenching and sub-critical treatment (De-MQ-Sct) process, and such a complex process is simply performed by alternate water quenching and air cooling. For comparison, the white cast iron balls also were treated by conventional normalization (NOR) process and Oil-quenching process, respectively. The partitioning of carbon from martensite to retained austenite during De-MQ-Sct process promotes the interaction between carbide precipitation and martensitic transformation, while this interaction is a unique effect only produced by multicycle quenching linking destabilizing and sub-critical treatments, which leads to more and finer secondary carbides and more carbon-enriched austenite in De-MQ-Sct sample than those in NOR or Oil-quenching sample. The average hardness of 60 HRC and impact toughness of 12.6 J/cm2 are obtained in De-MQ-Sct white cast iron balls, which are much higher than those in NOR and Oil-quenching ones. The wear behaviours measured by pin-on-disk wear tests indicate that the weight loss of De-MQ-Sct sample is only about one third of the NOR sample and one half of the Oil-quenching sample. Microstructural characterization reveals that high wear resistance related to hardness and toughness of the De-MQ-Sct balls are mainly attributed to the considerable fine secondary carbides and stable carbon-enriched retained austenite.

Keywords

Austenite Martensite Pearlite Martensitic Transformation Wear Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The work is financially supported by the National Natural Science Foundation of China (No. 51371117 and No. 51031001).

References

  1. 1.
    L.E. Svensson, H.K.D.H. Bhadeshia, B. Gretoft, and B. Ulander: J.Mater. Sci., 1986, vol. 21, pp. 1015-1019.CrossRefGoogle Scholar
  2. 2.
    Neville A, Reza F, Chiovelli S, et al.: Metall. Mater. Trans. A, 2006, 37, pp. 2339-2347.CrossRefGoogle Scholar
  3. 3.
    J.T.H. Pearce, D.W.L. Elwell, J Mater Sci Lett. 5(1986)1063-1064.CrossRefGoogle Scholar
  4. 4.
    A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D.V. Edmods, J.T.H. Pearce, Acta Mater. 53(2005) 4143-4154.CrossRefGoogle Scholar
  5. 5.
    M. Janssen, M.B. Van Leeuwen, M.F. Mendes de Leon: Proceedings of the 14th European Conference on Fracture, A. Neimitz et al., eds., Emas Publications, London, 2002, pp. 617–25.Google Scholar
  6. 6.
    K.-H.Z. Gahr and D.V. Doane: Metall. Trans. A, 1980, vol. 11A,pp. 613-20.CrossRefGoogle Scholar
  7. 7.
    C.K. Kim, S. Lee, J.-Y. Jung: Metall. Mater. Trans. A 37;633-643 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Bedolla-Jacuinde, M.W. Rainforth, I. Mejia: Metall Mater Trans A 2013; 44: 852-857.Google Scholar
  9. 9.
    Xiaohui Zhi, Jiandong Xing, Hanguang Fu, Yiming Gao, Mater Charact 2008; 59: 1221-1226.CrossRefGoogle Scholar
  10. 10.
    X.H.Tang,R.Chung,C.J.Pang,D.Y.Li,B.Hinckley,K.Dolman, Wear 2011, 271: 1426-1431 .CrossRefGoogle Scholar
  11. 11.
    Zhongli Liu,Yanxiang Li,Xiang Chen,KaiHua Hu, MAT SCI ENG A 2008, 486: 112-116.CrossRefGoogle Scholar
  12. 12.
    Chen Xiang, Li Yanxiang, Mater Sci Eng A 2010, 528:770-775.CrossRefGoogle Scholar
  13. 13.
    Rodenburg C, Rainforth W M. Acta Materialia, 2007, 55(7): 2443-2454.CrossRefGoogle Scholar
  14. 14.
    A. Bedolla-jacuinde, S.L. Aguilar, B. Hernandez, J. Mater. Eng. Perform. 14(2005) 149-157.CrossRefGoogle Scholar
  15. 15.
    A. Wiengmoon, J. T. H. Pearce, T. Chairuangsri, Mater. Chem. Phys. 125(2011) 739-748.CrossRefGoogle Scholar
  16. 16.
    Hakan Gasan, Fatin Erturk, Metall. Mater. Trans. A 44A(2013) 4493-5005.Google Scholar
  17. 17.
    Tabrett CP, Sare IR, Ghomashchi MR: Int Mater Rev. 1996; 41: 59-82.CrossRefGoogle Scholar
  18. 18.
    Wang J, Li C, Liu H, et al. Materials characterization, 2006, 56(1): 73-78.CrossRefGoogle Scholar
  19. 19.
    J. Wang, R.L. Zuo, Z.P. Sun, C. Li, H.H. Liu, H.S. Yang, B.L. Shen, S.J. Huang: Mater. Charact. 55: 234-240 (2005).CrossRefGoogle Scholar
  20. 20.
    H-H Liu, J Wang, B-L Shen, H-S Yang, S-J Gao, S-J Huang: Mater. Des. 28: 1059-1064 (2007).CrossRefGoogle Scholar
  21. 21.
    Jia X, Hao Q, Zuo X, et al. Materials Science and Engineering: A, 2014, 618: 96-103.CrossRefGoogle Scholar
  22. 22.
    G. Laird II, G.L.F. Powell: Metall. Mater. Trans. A 24: 981-988 (1993).CrossRefGoogle Scholar
  23. 23.
    C.P. Tabrett, I.R. Sare, Scr. Mater. 12(1998) 1747-1753.CrossRefGoogle Scholar
  24. 24.
    Sare I R, Arnold B K. Metallurgical and Materials Transactions A, 1995, 26: 1785-1793.CrossRefGoogle Scholar
  25. 25.
    Bedolla-Jacuinde A, Rainforth M W, Mejía I. Metallurgical and Materials Transactions A, 2013, 44: 856-872.CrossRefGoogle Scholar
  26. 26.
    X.W. Zuo, N.L. Chen, F. Gao,Y H. Rong, International Heat Treatment and Surface Engineering 8(2014) 15-23.CrossRefGoogle Scholar
  27. 27.
    Zhu X, Li W, Zhao H, et al. International Journal of Hydrogen Energy, 2013, 38(25): 10694-10703.CrossRefGoogle Scholar
  28. 28.
    S. Zhou, K. Zhang, N.L. Chen, J.F. Gu, YH Rong: ISIJ Int. 51: 1688-1695 (2011).CrossRefGoogle Scholar
  29. 29.
    Tabrett CP, Sare IR: Wear, 1997, 203: 206-219.CrossRefGoogle Scholar
  30. 30.
    J. Speer, D.K. Matlock, B.C. De Cooman, Schroth J.G.: Acta Mater. 51: 2611-2622; (2003).CrossRefGoogle Scholar
  31. 31.
    Hsu TY: Mater. Sci. Forum (2007) 561:2283-2286.CrossRefGoogle Scholar
  32. 32.
    Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 489.Google Scholar
  33. 33.
    Zhong N, Wang X D, Wang L, Rong Y H. Mater Sci Eng, 2009; A506: 111.CrossRefGoogle Scholar
  34. 34.
    Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261.Google Scholar
  35. 35.
    V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, ASM Trans. Quart. 60 (1967) 252.Google Scholar
  36. 36.
    D. Webster, ASM Trans. Quart. 61(1968) 816.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Xiaoshuai Jia
    • 1
  • Xunwei Zuo
    • 1
  • Yu Liu
    • 1
  • Nailu Chen
    • 1
  • Yonghua Rong
    • 1
  1. 1.School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations