Metallurgical and Materials Transactions A

, Volume 46, Issue 12, pp 5842–5855 | Cite as

Optimization of the Homogenization Heat Treatment of Nickel-Based Superalloys Based on Phase-Field Simulations: Numerical Methods and Experimental Validation

  • Ralf Rettig
  • Nils C. Ritter
  • Frank Müller
  • Martin M. Franke
  • Robert F. Singer


A method for predicting the fastest possible homogenization treatment of the as-cast microstructure of nickel-based superalloys is presented and compared with experimental results for the single-crystal superalloy ERBO/1. The computational prediction method is based on phase-field simulations. Experimentally determined compositional fields of the as-cast microstructure from microprobe measurements are being used as input data. The software program MICRESS is employed to account for multicomponent diffusion, dissolution of the eutectic phases, nucleation, and growth of liquid phase (incipient melting). The optimization itself is performed using an iterative algorithm that increases the temperature in such a way that the microstructural state is always very close to the incipient melting limit. Maps are derived allowing describing the dissolution of primary γ/γ′-islands and the elimination of residual segregation with respect to temperature and time.


Solvus Temperature Solution Heat Treatment Residual Segregation Process Window Single Crystal Superalloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded by the German Science Foundation (DFG) in the framework of the Collaborative Research Center/Transregio 103 (projects B1 and Z01). Support of Sabine Michel with the microprobe measurements is gratefully acknowledged. Bernd Böttger (access e.V., Aachen, Germany) is acknowledged for very helpful comments and suggestions regarding the phase-field simulations.


  1. 1.
    D Goldschmidt, Materialwissenschaft und Werkstofftechnik 1994, vol. 25, pp. 373-382.CrossRefGoogle Scholar
  2. 2.
    D Goldschmidt, Materialwissenschaft und Werkstofftechnik 1994, vol. 25, pp. 311-320.CrossRefGoogle Scholar
  3. 3.
    A. Heckl, R. Rettig, S. Cenanovic, M. Göken and R.F. Singer, Journal of Crystal Growth 2010, vol. 312, pp. 2137-2144.CrossRefGoogle Scholar
  4. 4.
    G.E. Fuchs and B.A. Boutwell, Materials Science and Engineering A 2002, vol. 333, pp. 72-79.CrossRefGoogle Scholar
  5. 5.
    M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds., TMS, Seven Springs, 2000, pp. 263–272.Google Scholar
  6. 6.
    N D’Souza and HB Dong, Scripta Materialia 2007, vol. 56, pp. 41-44.CrossRefGoogle Scholar
  7. 7.
    A. Heckl, R. Rettig and R.F. Singer, Metallurgical and Materials Transactions A 2010, vol. 41, pp. 202-211.CrossRefGoogle Scholar
  8. 8.
    N. D’Souza and H.B. Dong: in Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Seven Springs, 2008, pp. 261–269.Google Scholar
  9. 9.
    J.H. Lee and J.D. Verhoeven, Journal of Crystal Growth 1994, vol. 143, pp. 86-102.CrossRefGoogle Scholar
  10. 10.
    J.H. Lee and J.D. Verhoeven, Journal of Crystal Growth 1994, vol. 144, pp. 353-366.CrossRefGoogle Scholar
  11. 11.
    J Zhang and RF Singer, Zeitschrift für Metallkunde 2002, vol. 93, pp. 806-811.CrossRefGoogle Scholar
  12. 12.
    H.T. Pang, H.B. Dong, R. Beanland, H.J. Stone, C.M.F. Rae, P.A. Midgley, G. Brewster and N. D’Souza, Metallurgical and Materials Transactions A 2009, vol. 40, pp. 1660-1669.CrossRefGoogle Scholar
  13. 13.
    KL Gasko, GM Janowski and BJ Pletka, Materials Science and Engineering A 1988, vol. 104, pp. 1-8.CrossRefGoogle Scholar
  14. 14.
    W.S. Walston, I.M. Bernstein and A.W. Thompson, Metallurgical and Materials Transactions A 1991, vol. 22, pp. 1443-1451.CrossRefGoogle Scholar
  15. 15.
    P Caron and T. Khan, Aerospace Science and Technology 1999, vol. 3, pp. 513-523.CrossRefGoogle Scholar
  16. 16.
    GE Fuchs, Materials Science and Engineering A 2001, vol. 300, pp. 52-60.CrossRefGoogle Scholar
  17. 17.
    B.C. Wilson, J.A. Hickman and G.E. Fuchs, JOM 2003, vol. 55, pp. 35-40.CrossRefGoogle Scholar
  18. 18.
    H Harada: in International Gas Turbine Congress, M. Ito, T. Sakai, and A. Tsuge, eds., Tokyo, 2003, pp. 1–9.Google Scholar
  19. 19.
    R.A. MacKay, T.P. Gabb, J.L. Smialek and M.V. Nathal, JOM 2010, vol. 62, pp. 48-54.CrossRefGoogle Scholar
  20. 20.
    J.B. Wahl and K. Harris: in Superalloys 2012: 12th International Symposium on Superalloys, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman, eds., TMS, Seven Springs, PA, 2012, pp. 179–188.Google Scholar
  21. 21.
    A. Volek and R.F. Singer: in Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Seven Springs, 2004, pp. 713–718.CrossRefGoogle Scholar
  22. 22.
    A Volek, RF Singer, R Bürgel, J Grossmann and Y Wang, Metallurgical and Materials Transactions A 2006, vol. 37A, pp. 405-410.CrossRefGoogle Scholar
  23. 23.
    N. D’Souza, D. Welton, G.D. West, I.M. Edmonds and H. Wang, Metallurgical and Materials Transactions A 2014, vol. 45A, pp. 5968-5981.CrossRefGoogle Scholar
  24. 24.
    S.R. Hegde, R.M. Kearsey and J.C. Beddoes, Materials Science and Engineering A 2010, vol. 527, pp. 5528-5538.CrossRefGoogle Scholar
  25. 25.
    E.H. Copland, N.S. Jacobson, and F.J. Ritzert: Report No. NASA/TM-2001-210897, NASA, Glenn Research Center, Cleveland, 2001.Google Scholar
  26. 26.
    J.C. Zhao and M.F. Henry: Advanced Engineering Materials 2002, vol. 4, pp. 501-508.CrossRefGoogle Scholar
  27. 27.
    R. Rettig, A. Heckl, S. Neumeier, F. Pyczak, M. Göken and R.F. Singer, Defect and Diffusion Forum 2009, vol. 289-292, pp. 101-108.CrossRefGoogle Scholar
  28. 28.
    B. Meurer, P. Spencer and D. Neuschütz, Zeitschrift für Metallkunde 2003, vol. 94, pp. 139-143.CrossRefGoogle Scholar
  29. 29.
    Q. Du and A. Jacot, Acta Materialia 2005, vol. 53, pp. 3479-3493.CrossRefGoogle Scholar
  30. 30.
    L. Rougier, A. Jacot, C.A. Gandin, P. Di Napoli, D. Ponsen, and V. Jaquet: 2nd Eur. Symp. Superalloys and their Appl., J.-Y. Guedou and J. Chone, eds., MATEC Web of Conferences, Giens, 2014, p. 11003.Google Scholar
  31. 31.
    I Steinbach, F Pezzolla, B Nestler, M Seeßelberg, R Prieler, G.J. Schmitz and J.L.L. Rezende, Physica D 1996, vol. 94, pp. 135-147.CrossRefGoogle Scholar
  32. 32.
    I. Lopez-Galilea, S. Huth, S.G. Fries, N. Warnken, I. Steinbach and W. Theisen, Metallurgical and Materials Transactions A 2012, vol. 43A, pp. 5153-5164.CrossRefGoogle Scholar
  33. 33.
    N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries and I. Steinbach, Acta Materialia 2009, vol. 57, pp. 5862-5875.CrossRefGoogle Scholar
  34. 34.
    N. Warnken, H. Larsson and R.C. Reed, Materials Science and Technology 2009, vol. 25, pp. 179-185.CrossRefGoogle Scholar
  35. 35.
    M.M. Franke, R. F. Singer and I. Steinbach, Model. Simul. Mater. Sci. Eng. 2014, vol. 22, p. 025026 (9pp).CrossRefGoogle Scholar
  36. 36.
    V.I. Motorin and S.L. Musher, The Journal of Chemical Physics 1984, vol. 81, pp. 465-469.CrossRefGoogle Scholar
  37. 37.
    Z.H. Jin, P. Gumbsch, K. Lu and E. Ma, Physical Review Letters 2001, vol. 87, p. 055703.CrossRefGoogle Scholar
  38. 38.
    K. Lu and Y. Li, Physical Review Letters 1998, vol. 80, p. 4474.CrossRefGoogle Scholar
  39. 39.
    V.J. Levitas, International Journal of Plasticity 2012, vol. 34, pp. 41-60.CrossRefGoogle Scholar
  40. 40.
    B. Sonderegger and E. Kozeschnik, Metallurgical and Materials Transactions 2010, vol. 41A, pp. 3262-3269.CrossRefGoogle Scholar
  41. 41.
    J Andersson, T Helander, L Höglund, P Shi and B Sundman, CALPHAD 2002, vol. 26, pp. 273-312.CrossRefGoogle Scholar
  42. 42.
    N. Saunders and AP Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier Science Ltd., Kidlington, 1998.Google Scholar
  43. 43.
    N. Saunders, M. Fahrmann, and C.J. Small: in Superalloys 2000, K.A. Green, T.M. Pollock, and R.D. Kissinger, eds., TMS, Seven Springs, 2000, pp. 803–811.Google Scholar
  44. 44.
    B. Böttger, J. Eiken, and M. Apel: Comput. Mater. Sci. 2015, vol. 108B, pp. 283-292.CrossRefGoogle Scholar
  45. 45.
    A. Schmidt, Acta Math. Univ. Comen. 1998, vol. 67, pp. 57-68.Google Scholar
  46. 46.
    C.E. Campbell, W.J. Boettinger and U.R. Kattner, Acta Materialia 2002, vol. 50, pp. 775-792.CrossRefGoogle Scholar
  47. 47.
    C.E. Campbell, Acta Materialia 2008, vol. 56, pp. 4277-4290.CrossRefGoogle Scholar
  48. 48.
    K.C. Russell, Advances in Colloid and Interface Science 1980, vol. 13, pp. 205-318.CrossRefGoogle Scholar
  49. 49.
    D. A. Porter, K. E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys. 3rd ed., Taylor & Francis, Boca Raton, 2009.Google Scholar
  50. 50.
    R. Rettig and R. F. Singer, Modelling and Simulation in Materials Science and Engineering 2014, vol. 22, p. 085002.CrossRefGoogle Scholar
  51. 51.
    B. Sonderegger and E. Kozeschnik, Metallurgical and Materials Transactions 2009, vol. 40A, pp. 499-510.CrossRefGoogle Scholar
  52. 52.
    E. Kozeschnik: in Computational Materials Engineering: An Introduction to Microstructure Evolution, K.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik and B. Nestler, eds., Elsevier Academic Press, Burlington, 2007, pp. 179–218.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Ralf Rettig
    • 1
  • Nils C. Ritter
    • 1
  • Frank Müller
    • 1
  • Martin M. Franke
    • 2
  • Robert F. Singer
    • 1
  1. 1.Institute for Science and Technology of Metals, Department of Materials Science and EngineeringUniversity of ErlangenErlangenGermany
  2. 2.Neue Materialien Fürth GmbHFürthGermany

Personalised recommendations