Metallurgical and Materials Transactions A

, Volume 46, Issue 11, pp 5002–5010 | Cite as

Determination of Pressure Effects on the αγ Phase Transition and Size of Fe in Nd-Fe-B Spring Exchange Magnets

  • Manuel Abuin
  • Zafer Turgut
  • Natan Aronhime
  • Vladimir Keylin
  • Alex Leary
  • Vincent DeGeorge
  • John Horwath
  • S. Lee Semiatin
  • David E. Laughlin
  • Michael E. McHenry


Pressure effects in RE-lean Nd2Fe14B-based nanocomposite systems developed from nanocrystalline precursors are studied in this work. In particular, the pressure dependence of the α → γ phase transformation in the Fe phase is examined along with the suppression of coarsening (growth) in both phases at higher pressures. By synchrotron X-ray diffraction we determined that the α → γ-phase transformations occur at temperatures of 1120 K (847 °C) at 1 GPa and 960 K (687 °C) at 5 GPa. A composition rich in Fe appears to have an ~373 K (100 °C) range of temperature over which the α, γ-phases coexist for atmospheric pressure. We compare our experimental data with other reported observations for Fe and with equations of state (EOS) determined from first principle calculations. From this study we observe an important feature: the phase transition begins at a higher temperature in flake samples than in powder samples. We consider the magnetic contribution to the heat capacity in the EOS for Fe and describe the implications of dipole moments on the slope of the Clapeyron equation for the PT phase diagram in Fe. Additionally, the phase transition occurs at temperatures where growth by diffusional coarsening is also operative. This is significant since the size of soft Fe nanostructures is important to spring exchange. Suppression of the phase transition and Fe coarsening at higher pressures suggest that there may be interesting mechanical processing routes to be investigated to optimize spring exchange effects in Nd-Fe-B permanent magnets.


Magnetic Contribution Clapeyron Equation Integral Breadth Spring Exchange Planar Flow Casting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



All authors would like to acknowledge Argonne Nation Laboratory for beam time. M.A. would like to acknowledge the PICATA fellowship. M.E.M, V.K., V.D., N.A., and A.L. acknowledge support from the Wright Patterson Air Force (Contract Number: FA8650-12-D-2225).Z.T, J.C.H and S.L.S acknowledge support from the AFOSR.


  1. 1.
    J. F. Herbst, J. J. Croat, and F. E. Pinkerton: Phys. Rev. B, 1984, vol. 29, pp. 4176-78.CrossRefGoogle Scholar
  2. 2.
    D. Givord, H. S. Li and J. M. Moreau: Sol. St. Comm, 1984, vol. 50, pp. 497-499.CrossRefGoogle Scholar
  3. 3.
    J. F. Herbst: Rev. Mod. Phys, 1991, vol. 63, pp. 819-98.CrossRefGoogle Scholar
  4. 4.
    R. Skomski, and J.M.D. Coey: Phys. Rev. B, 1993, vol. 48, pp. 15812–15816.CrossRefGoogle Scholar
  5. 5.
    A. Inoue, A. Takeuchi, A. Makino and T. Masumoto: IEEE Trans. Mag, 1995, vol. 31, pp. 3626-28.CrossRefGoogle Scholar
  6. 6.
    A. Leary, S. Kernion, M.A. Lucas, P. R. Ohodnicki, and M. E. McHenry: J. Appl. Phys., 2013, vol. 113, 17A317-317-3.Google Scholar
  7. 7.
    Y. Hanlumyuang, P. R. Ohodnicki, D. E Laughlin, and M. E. McHenry: J. Appl. Phys., 2006, vol. 99, 08F101.CrossRefGoogle Scholar
  8. 8.
    P. R. Ohodnicki, D. E Laughlin, M. E. McHenry, and M. Widom: Acta Mat., 2010, vol. 58, pp. 4804–4813.CrossRefGoogle Scholar
  9. 9.
    M.-A. Van Ende, and I.-H. Jung: J. All. Cmpd., 2013, vol. 548,pp.133–154.CrossRefGoogle Scholar
  10. 10.
    D. Givord, P. Tenaud, and J. M. Moreau: J. Less Common Met., 1986, vol. 123, pp. 109–116.CrossRefGoogle Scholar
  11. 11.
    A. Yamada, Y. B. Wang, T. Inoue, W. G. Yang, C. Park, T. Yu, and G. Y.Shen: Rev. Sci. Instrum., 2011, vol.82, 015103.CrossRefGoogle Scholar
  12. 12.
    Y. Kono, C. Park, C. Kenney-Benson, G. Shen, and Y. Wang: Phys. Earth Planet. Inter., 2014, vol. 228, pp. 269–280.CrossRefGoogle Scholar
  13. 13.
    G. Shen, P. Chow, Y. Xiao, S. Sinogeikin, Y. Meng, W. Yang, H.-P.Lieermann, O. Shebanova, E. Rod, A. Bommannavar, and H.-K. Mao: High Press. Res., 2008, vol.28, pp. 145–162.CrossRefGoogle Scholar
  14. 14.
    O. L. Anderson, D. G. Isaak, and S. Yamamoto: J. Appl. Phys., 1989, vol.65, pp. 1534.CrossRefGoogle Scholar
  15. 15.
    B. Buras, D.L. Gerward, J. Jorgensen, and B. Willis: International Tables for Crystallography, 2006, Section 2.5.1, vol. C, pp. 84–87.Google Scholar
  16. 16.
    S. Clark: Crystallogr. Rev., 2002, vol.8, pp. 57–92.CrossRefGoogle Scholar
  17. 17.
    T. B. Massalski and D. E. Laughlin: CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, vol. 33, pp. 3-7.CrossRefGoogle Scholar
  18. 18.
    T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317-425.CrossRefGoogle Scholar
  19. 19.
    C. Barrett and T. B. Massalski: Structure of Metals, Crystallographic Methods, Principles and Data”, 3rd revised edition, International Series on Materials Science and Technology, Vol. 35,Pergamon, Oxford, 1980.Google Scholar
  20. 20.
    M. E. McHenry and D. E. Laughlin; Chapter 19—Magnetic Properties of Metals and Alloys. Physical Metallurgy 5th Edition. (in press).Google Scholar
  21. 21.
    P. R. Ohodnicki, Y. Hanlumyuang, D. E Laughlin, and M. E. McHenry: Metall. Mat. Trans. A, 2007, vol. 38A, pp. 738-744.CrossRefGoogle Scholar
  22. 22.
    M. E. McHenry, S. A. Majetich, M. J. De Graef, J. O. Artman, and S. Staley: Phys. Rev. B, 1994, vol. 49, pp. 11358-363.CrossRefGoogle Scholar
  23. 23.
    D. Apel et al.: Zeitschrift fur Kristallographie, 2011, vol. 226, No. 12.Google Scholar
  24. 24.
    F J. J. Ipus, P. Herre, P. R. Ohodnicki, and M. E. McHenry: J. Appl. Phys., 2012, vol. 111, 07A323-07A325-27.Google Scholar
  25. 25.
    F. Faupel, W. Frank, M.-P. Macht, V. Naundorf, K. Ratzke, H. Schober, S. Sharma, and H. Teichler: Rev. Mod. Phys., 2003, vol. 75, pp. 237–280.CrossRefGoogle Scholar
  26. 26.
    E. F. Kneller and R. Hawig: IEEE Transactions on Magnetics, 1991, vol. 27, pp. 3588-3560.CrossRefGoogle Scholar
  27. 27.
    R. Skomski and J. M. D. Coey: Phys. Rev. B, 1993, vol. 48, pp. 15812–16.CrossRefGoogle Scholar
  28. 28.
    G. Herzer: IEEE Trans. Magn., 1990, vol. 26, pp. 1397–1402.CrossRefGoogle Scholar
  29. 29.
    M. E. McHenry, M.A. Willard, and D.E. Laughlin: Prog. Mat. Sci., 1999, vol. 44, pp. 291-433.CrossRefGoogle Scholar
  30. 30.
    J. Birch: Geophys. Res., 1952,vol. 57, pp. 227-286.CrossRefGoogle Scholar
  31. 31.
    B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials, 2nd Edition, IEEE Press, J Wiley, Hoboken, 2009.Google Scholar
  32. 32.
    P. Vinet et al: J. Phys. Condens. Matter, 1989, vol. 1.Google Scholar
  33. 33.
    J.B. Austin: Industrial and Engineering Chemistry, 1932, vol. 24, pp. 1225-1235.CrossRefGoogle Scholar
  34. 34.
    O.L. Anderson: J. Geodynamics, 1984, vol. 1, pp. 185-214.CrossRefGoogle Scholar
  35. 35.
    F. P. Bundy: J. Appl. Phys., 1965, vol. 26, pp. 616.CrossRefGoogle Scholar
  36. 36.
    H.M. Strong et al.: Met. Trans., 1973, vol. 4, pp. 2657-2661.CrossRefGoogle Scholar
  37. 37.
    P.W. Mirwald and G.C. Kennedy: J. Geophys. Res., 1979, vol. 84, pp. 656–58.CrossRefGoogle Scholar
  38. 38.
    R. Boehler et al.: High-Pressure Research in Mineral Physics, 1987, pp. 173–76.Google Scholar
  39. 39.
    J. Zhang: Phys. Chem. Minerals, 1999, vol. 26, pp. 644-648.CrossRefGoogle Scholar
  40. 40.
    W. Pepperhoff and M. Acet: Constitution and Magnetism of Iron and Its Alloys, 3,Springer-Verlag, Berlin, 2001.CrossRefGoogle Scholar
  41. 41.
    M. DeGraef and M. E. McHenry: Structure of Materials., 1st edition, Cambridge University Press, New York, 2007.Google Scholar
  42. 42.
    P. A. Rock: Chemical Thermodynamics, University Science Books, Mill Valley, CA. 1983.Google Scholar
  43. 43.
    Y. Wang, S. Curtaroala, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L. Q. Chen and Z. K. Liu: Computer Coupling of Phase Diagrams and Thermodynamics, 2004, vol. 28, pp. 79-90.CrossRefGoogle Scholar
  44. 44.
    J. M. MacLaren, D. P. Clougherty, M. E. McHenry, and M. M. Donovan: Comp. Phys. Comm., 1991, vol. 66, pp. 383–91.CrossRefGoogle Scholar
  45. 45.
    S.L. Semiatin, J.C. Soper, and I.M. Sukonnik: Scripta Metall. Mater., 1994, vol. 30, pp. 951-55.CrossRefGoogle Scholar
  46. 46.
    D.L. Bourell and W. Kaysser: Acta Metall. Mater., 1993, vol. 41, pp. 2933-2937.CrossRefGoogle Scholar
  47. 47.
    S.V. Prikhodko and A.J. Ardell: Acta Mater., 2003, vol. 51, pp. 5001-5012.CrossRefGoogle Scholar
  48. 48.
    S.V. Prikhodko and A.J. Ardell: Acta Mater., 2003, vol. 51, pp. 5013-5019.CrossRefGoogle Scholar
  49. 49.
    R. W. Lee: Appl. Phys. Lett., 1985, vol. 46, pp. 790–91.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Manuel Abuin
    • 1
    • 2
  • Zafer Turgut
    • 3
  • Natan Aronhime
    • 1
  • Vladimir Keylin
    • 1
  • Alex Leary
    • 1
  • Vincent DeGeorge
    • 1
  • John Horwath
    • 3
  • S. Lee Semiatin
    • 3
  • David E. Laughlin
    • 1
  • Michael E. McHenry
    • 1
  1. 1.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.CEI Campus Moncloa, UCM-UPMMadridSpain
  3. 3.Air Force Research LaboratoryWright Patterson Air Force BaseUSA

Personalised recommendations