Metallurgical and Materials Transactions A

, Volume 46, Issue 11, pp 5149–5157 | Cite as

Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure

  • Jin Yang
  • Yulong Li
  • Hua Zhang
  • Wei Guo
  • David Weckman
  • Norman Zhou


A diode laser welding/brazing technique was used for lap joining of 5754 aluminum alloy to DP 980 steel with Al-Si filler metal. The correlation between joint interfacial microstructure, wettability of filler metal, and mechanical properties was systematically investigated. At low laser power (1.4 kW), a layer of intermetallic compounds, composed of θ-Fe(Al,Si)3 and τ 5 -Al7.2Fe1.8Si, was observed at the interface between fusion zone and steel. Because of the poor wettability of filler metal on the steel substrate, the joint strength was very low and the joint failed at the FZ/steel interface. When medium laser power (2.0 kW) was applied, the wettability of filler metal was enhanced, which improved the joint strength and led to FZ failure. With further increase of laser power to 2.6 kW, apart from θ and τ 5, a new hard and brittle η-Fe2(Al,Si)5 IMC with microcracks was generated at the FZ/steel interface. The formation of η significantly degraded the joint strength. The failure mode changed back to interfacial failure.


Laser Power Filler Metal High Laser Power Joint Strength DP980 Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of State Scholarship Fund of China (Grant No. 201306820002) and the National Natural Science Foundation of China (No. 51265035) is gratefully acknowledged. The authors would like to thank Dr. A.M. Nasiri and PhD candidates H. Huang, D.C. Saha, and D. Xu from Centre for Advanced Materials Joining, University of Waterloo, for valuable discussions. The authors thank Dr. Yuquan Ding from the Materials Science and Engineering Group, University of Waterloo, for the help with SEM, EDS, and nanohardness operations. The TEM research was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies.


  1. 1.
    1. K.H. Rendigs: Mater. Sci. Forum., 2008, vol. 242, pp. 11-24.CrossRefGoogle Scholar
  2. 2.
    2. G.S. Cole, and A.M. Sherman: Mater. Charact., 1995, vol 35, pp. 3-9.CrossRefGoogle Scholar
  3. 3.
    3. Y. Muraoka, and H. Miyaoka: J. Mater. Process Technol., 1993, vol 38, pp. 655–74.CrossRefGoogle Scholar
  4. 4.
    4. M.J. Rathod and M. Kutsuna: Weld. J., 2004, vol. 83, pp. 16s-23s.Google Scholar
  5. 5.
    5. M.J. Torkamany, S. Tahamtan, and J. Sabbaghzadeh: Mater. Des., 2010, vol. 31, pp. 458–65.CrossRefGoogle Scholar
  6. 6.
    6. V.X. Tran, and J. Pan: Int. J. Fatigue., 2010, vol. 32, pp. 1167–79.CrossRefGoogle Scholar
  7. 7.
    7. M. Acarer, and B. Demir: Mater. Lett., 2008, vol. 62, pp. 4158–60.CrossRefGoogle Scholar
  8. 8.
    8. M. Kimura, H. Ishii, M. Kusaka, K. Kaizu, and A. Fuji: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 388–95.CrossRefGoogle Scholar
  9. 9.
    9. M. Soltan Ali Nezhad, and A. Haerian Ardakani: Mater. Des., 2009, vol. 30, pp. 1103–09.CrossRefGoogle Scholar
  10. 10.
    10. J.L. Song, S.B. Lin, C.L. Yang, and C.L. Fan: J. Alloys Compounds, 2009, vol. 488, 217–22.CrossRefGoogle Scholar
  11. 11.
    11. A. Mathieu, S. Pontevicci, J.C. Viala, E. Cicala, S. Matteï, and D. Grevey: Mater. Sci. Eng., A, 2006, vol. 435, pp. 19-28.CrossRefGoogle Scholar
  12. 12.
    12. K. Saida, W. Song, and K. Nishimoto: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 227–35.CrossRefGoogle Scholar
  13. 13.
    13. Y. Su, X. Hua, and Y. Wu: J. Mater. Process Technol., 2014, vol. 214, pp. 81-86.CrossRefGoogle Scholar
  14. 14.
    14. H.T. Zhang, J.C. Feng, P. He, and H. Hackl: Mater. Charact., 2007, vol. 58, pp. 588–92.CrossRefGoogle Scholar
  15. 15.
    15. S.B. Lin, J.L. Song, C.L. Yang, and G.C. Ma: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 636–39.CrossRefGoogle Scholar
  16. 16.
    16. H. Dong, L. Yang, C. Dong, and S. Kou: Mater. Sci. Eng., A, 2010, vol. 527, pp. 7151–54.CrossRefGoogle Scholar
  17. 17.
    17. A. Mathieu, R. Shabadi, A. Deschamps, M. Suery, S. Matteï, D. Grevey, and E. Cicala: Opt. Laser Technol., 2007, vol. 39, pp. 652–61.CrossRefGoogle Scholar
  18. 18.
    18. G. Sierra, P. Peyre, F.D. Beaume, D. Stuart, and G. Fras: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 430–37.CrossRefGoogle Scholar
  19. 19.
    19. C. Dharmendra, K.P. Rao, J. Wilden, and S. Reich: Mater. Sci. Eng., A, 2011, vol. 528, pp. 1497–1503.CrossRefGoogle Scholar
  20. 20.
    20. S.B. Lin, J.L. Song, C.L. Yang, C.L. Fan, and D.W. Zhang: Mater. Des., 2010, vol. 31, pp. 2637–42.CrossRefGoogle Scholar
  21. 21.
    21. H. Dong, W. Hu, Y. Duan, X. Wang, and C. Dong: J. Mater. Process Technol., 2012, vol. 212, pp. 458–64.CrossRefGoogle Scholar
  22. 22.
    22. Y. Su, X. Hua, and Y. Wu: J. Mater. Process Technol., 2014, vol. 214, pp. 750–55.CrossRefGoogle Scholar
  23. 23.
    23. P. Vaillant, and J.P. Petitet: J. Mater. Sci., 1995, vol. 30, pp. 4659–68.CrossRefGoogle Scholar
  24. 24.
    24. M. Roulin, J.W. Luster, G. Karadeniz, and A. Mortensen: Weld. J., 1999, vol. 78, pp. 151s–55s.Google Scholar
  25. 25.
    25. J.C. Viala, M. Peronnet, F. Barbeau, F. Bosselet, and J. Bouix: Compos. Part A App. Sci. Manuf., 2002, vol. 33, pp. 1417–20.CrossRefGoogle Scholar
  26. 26.
    26. D. Pierre, F. Barbeau, M. Peronnet, F. Bosselet, and J. C. Viala: Defect Diffus. Forum, 2001, vol. 194, pp. 1593–98.CrossRefGoogle Scholar
  27. 27.
    S.H. Chen, J.H. Huang, K. Ma, X.K. Zhao, A. Vivek: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3064-3073.CrossRefGoogle Scholar
  28. 28.
    28. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley: Rev. Mod. Phys., 2009, vol. 81, pp. 739-805.CrossRefGoogle Scholar
  29. 29.
    29. H. He, C. Yang, S. Lin, C. Fan, Z. Chen, and Z. Chen: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 527-533.CrossRefGoogle Scholar
  30. 30.
    R. Kovacevic: Welding Processes, InTech, Croatia, 2012, p. 33-54.CrossRefGoogle Scholar
  31. 31.
    31. T. Maitra, and S.P. Gupta: Mater. Charact., 2002, vol. 49, pp. 293-311.CrossRefGoogle Scholar
  32. 32.
    32. Y. Li, and B. Legendre: J. Alloys Compounds, 2000, vol. 302, pp. 187–91.CrossRefGoogle Scholar
  33. 33.
    33. A.M. Nasiri, L. Li, S.H. Kim, Y. Zhou, D.C. Weckman, and T.C. Nguyen: Weld. J., 2011, vol. 90, pp. 211s-219s.Google Scholar
  34. 34.
    A.M. Nasiri: PhD Dissertation, University of Waterloo, 2013.Google Scholar
  35. 35.
    35. S.W. Mei, M. Gao, J. Yan, C. Zhang, G. Li, and X.Y. Zeng: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 293-300.CrossRefGoogle Scholar
  36. 36.
    36. N. Takata, M. Nishimoto, S. Kobayashi, and M. Takeyama: Intermetallics, 2014, vol. 54, pp. 136-142.CrossRefGoogle Scholar
  37. 37.
    37. W.J. Cheng, and C.J. Wang: Mater. Charact., 2010, vol. 61, pp. 467-473.CrossRefGoogle Scholar
  38. 38.
    B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley publishing co, Philippines, 1978, p. 135.Google Scholar
  39. 39.
    B.D. Cullity: Elements of x-ray diffraction, 2nd ed. Addison-Wesley publishing co, Philippines, 1978, p. 512Google Scholar
  40. 40.
    40. Y.Y. Chang, C.C. Tsaur and J.C. Rock: Surf. Coat. Tech., 2006, vol. 200, pp. 6588-6593.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Jin Yang
    • 1
    • 2
  • Yulong Li
    • 1
  • Hua Zhang
    • 1
  • Wei Guo
    • 3
  • David Weckman
    • 2
  • Norman Zhou
    • 2
  1. 1.Key Lab of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical EngineeringNanchang UniversityNanchangChina
  2. 2.Center for Advanced Materials JoiningUniversity of WaterlooWaterlooCanada
  3. 3.School of Mechanical Engineering and AutomationBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations