Metallurgical and Materials Transactions A

, Volume 46, Issue 11, pp 5038–5046 | Cite as

Intergranular Strain Evolution in Titanium During Tensile Loading: Neutron Diffraction and Polycrystalline Model

  • David Gloaguen
  • Guy Oum
  • Vincent Legrand
  • Jamal FajouiEmail author
  • Marie-José Moya
  • Thilo Pirling
  • Winfried Kockelmann


Intergranular strains due to tensile plastic deformation were investigated in a commercially pure Ti. Neutron diffraction has been used to characterize the evolution of residual elastic strain in grains with different crystallographic orientations. Experimental data have been obtained for the macroscopic stress–strain curve and the intergranular strain evolution in the longitudinal and transverse direction relative to the uniaxial loading axis. The elasto-plastic self-consistent (EPSC) approach was used to model the deformation behavior of the studied material. Comparison between the neutron measurements and the model predictions shows that in most cases the EPSC approach can predict the lattice strain evolution and capture the plastic anisotropy observed in the experiments.


Neutron Diffraction Lattice Strain Critical Resolve Shear Stress Macroscopic Stress Macroscopic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the ISIS and ILL neutron facilities scientific committees for the allocated experimental days on the SALSA (experiment 1-02-30, ILL, France) and GEM (experiment RB1010055, ISIS, UK) instruments.


  1. 1.
    P.G. Partridge: Int. Mater. Rev., 1967, vol. 12, pp. 169–94.CrossRefGoogle Scholar
  2. 2.
    A.K. Singh, R.A. Schwarzer: Z. Metallkd., 2000, vol. 91, pp. 702–16.Google Scholar
  3. 3.
    H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.CrossRefGoogle Scholar
  4. 4.
    S. Zaefferer: Mater. Sci. Eng. A, 2003, vol. 344, pp. 20–30.CrossRefGoogle Scholar
  5. 5.
    M.J. Philippe, M. Serghat, P. Van Houtte, C. Esling: Acta Metall. Mater., 1995, vol. 43, pp. 1619–30.CrossRefGoogle Scholar
  6. 6.
    H. Numakura, Y. Minonishi, M. Koiwa: Scripta Metall., 1986, vol. 20, pp. 1581–86.CrossRefGoogle Scholar
  7. 7.
    M.G. Glavicic, A.A. Salemn, S.L. Semiatin: Acta Mater., 2004, vol. 52, pp. 647–655.CrossRefGoogle Scholar
  8. 8.
    A. Akhtar: Metall. Trans. A, 1975, vol. 6, pp. 1105–113.CrossRefGoogle Scholar
  9. 9.
    D.R. Chichili, K.T. Ramesh, K.J. Hemker: Acta Mater. 1998, vol. 46, pp. 1025–43.CrossRefGoogle Scholar
  10. 10.
    A.A. Salem, S.R. Kalidindi, R.D. Doherty: Acta. Mater., 2003, vol. 51, pp. 4225–37.CrossRefGoogle Scholar
  11. 11.
    R. Levy-Tubiana, A. Baczmanski, A. Lodini: Mater. Sci. Eng. A, 2003, vol. 341, pp. 74–86.CrossRefGoogle Scholar
  12. 12.
    B. Clausen, T. Lorentzen, A.M. Bourke, M.R. Daymond: Mater. Sci. Eng. A, 1999, 199, vol. 259, pp. 17–24.CrossRefGoogle Scholar
  13. 13.
    D. Gloaguen, T. Berchi, E. Girard, R. Guillén: Acta Mater., 2007, vol. 55, pp. 4369–79.CrossRefGoogle Scholar
  14. 14.
    J.L.W. Warwick, N.G. Jones, K.M. Rahman, D. Dye: Acta Mater., 2012, vol. 60, pp. 6720–31.CrossRefGoogle Scholar
  15. 15.
    F. Xu, R.A. Holt, M.R. Daymond: Acta Mater., 2008, vol. 56, pp. 3672–3687.CrossRefGoogle Scholar
  16. 16.
    N. Benmhenni, S. Bouvier, R. Brenner, T. Chauveau, B. Bacroix: Mater. Sci. Eng. A, 2013, vol. 573, pp. 222–23.CrossRefGoogle Scholar
  17. 17.
    N.P. Gurao, R. Kapoor, S. Suwas: Acta Mater., 2011, vol. 59, pp. 3431–46.CrossRefGoogle Scholar
  18. 18.
    B.S. Fromm, B.L. Adams, S. Ahmadi, M. Knezevic: Acta Mater. 2009, vol. 57, pp. 2339–48.CrossRefGoogle Scholar
  19. 19.
    X. Wu, S.R. Kalidindi, C. Necker, A.A. Salem: Acta Mater., 2007, vol. 55, pp. 423–32.CrossRefGoogle Scholar
  20. 20.
    M. Bataini: PhD Dissertation, Monash University, Australia, 2008.Google Scholar
  21. 21.
    C. Larsson, B. Clausen, T.M. Holden, M.A.M. Bourke: Scripta Mater., 2007, vol. 51, pp. 571–75CrossRefGoogle Scholar
  22. 22.
    C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tomé, S.R. Agnew: Int J Plasticity, 2010, vol. 26, pp. 1772–91.CrossRefGoogle Scholar
  23. 23.
    J.W.L. Pang, T.M. Holden, T.E. Mason: Acta Mater., 1998, vol. 46, pp. 1503–18.CrossRefGoogle Scholar
  24. 24.
    P. Dawson, D. Boyce, S. macEwen, R. Rogge: Mater. Sci. Eng. A, 2001, vol. 313, pp. 123–44CrossRefGoogle Scholar
  25. 25.
    A. Baczmanski, N. Hfaiedh, M. François, K. Wierzbanowki: Mater Sci Eng A, 2009, vol. 501, pp. 153–65.CrossRefGoogle Scholar
  26. 26.
    H. Wang, P.D. Wu, C.N. Tomé, J. Wang: Int. J. Solids Struct., 2012, vol. 26, pp. 1772–91.Google Scholar
  27. 27.
    O. Muransky, M.R. Barnett, V. Luzin, Vogel: Mater. Sci. Eng. A., 2010, vol. 527, pp. 1383–94.CrossRefGoogle Scholar
  28. 28.
    J.W.L. Pang, T.M. Holden, P.A. Turner, T.E. Mason: Acta Mater., 1999, vol. 47, pp. 373–83.CrossRefGoogle Scholar
  29. 29.
    P. Rangaswamy, A.M. Bourke, D.W. Brown, G.C. Kaschner, RB Rogge, MG Stout, CN Tomé: Metall. Trans. A, 2002, vol. 33, pp. 757–63.CrossRefGoogle Scholar
  30. 30.
    D. Gloaguen, M. François, R. Guillen, J. Royer: Phys. Status Solidi a, 2002, vol. 193, pp. 12–25.CrossRefGoogle Scholar
  31. 31.
    J.R. Cho, D. Dye, K.T. Conlon, M.R. Daymond, R.C. Reed: Acta Mater., 2002, vol. 50, pp. 4847–64.CrossRefGoogle Scholar
  32. 32.
    J.L.W. Warwick, J. Coakley, S.L. Raghunathan, R.J. Talling, D. Dye: Acta Mater., 2012, vol. 60, pp. 4117–27.CrossRefGoogle Scholar
  33. 33.
    S.L. Raghunathan, A.M. Stapleton, R.J. Dashwood, M. Jackson, D. Dye: Acta Mater., 2007, vol. 55, pp. 6861–72.CrossRefGoogle Scholar
  34. 34.
    D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, S. Branchu: Acta Mater., 2013, vol. 61, pp. 5779–5790.CrossRefGoogle Scholar
  35. 35.
    W. Kockelmann, L.C. Chapon, P.G. Radelli: Physica B, 2006, vol. 385, pp. 639–43.CrossRefGoogle Scholar
  36. 36.
    Hannon AC (2005), Nucl Instrum Methods Phys Res 551: 88-107.CrossRefGoogle Scholar
  37. 37.
    Wenk HR, Matthies S, Donavan J, Chateigner D (1998), J Appl Cryst 31:262-269.CrossRefGoogle Scholar
  38. 38.
    Pirling T, Bruno G, Withers PJ (2006), Mater Sci Eng A 437:139-144.CrossRefGoogle Scholar
  39. 39.
    Richard D, Ferrand M, Kearley GJ (1996, J Neutron Res 4:33-39.CrossRefGoogle Scholar
  40. 40.
    Kröner E (1961, Acta Metall 9:155-161.CrossRefGoogle Scholar
  41. 41.
    Hill R (1965), J Mech Phys Solids 13: 89-101.CrossRefGoogle Scholar
  42. 42.
    Gloaguen D, Berchi T, Girard E, Guillén R (2008), J Nucl Mater 374:138-146.CrossRefGoogle Scholar
  43. 43.
    Lipinski P, Berveiller M (1989), Int J Plasticity 5:149-172.CrossRefGoogle Scholar
  44. 44.
    Hutchinson W (1970), Proc R Soc London A 319:247-272.CrossRefGoogle Scholar
  45. 45.
    Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties, Cambridge MA, M.I.T. Press.Google Scholar
  46. 46.
    Dye D, Stone H J, Reed R C (2001), Curr. Opin. Solid State Mater. Sci. 5: 31-37.CrossRefGoogle Scholar
  47. 47.
    Muransky O, Carr DG, Barnett MR, Oliver EC, Sittner P (2008), Mater Sci Eng A 496: 14-24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • David Gloaguen
    • 1
  • Guy Oum
    • 1
  • Vincent Legrand
    • 1
  • Jamal Fajoui
    • 1
    Email author
  • Marie-José Moya
    • 1
  • Thilo Pirling
    • 2
  • Winfried Kockelmann
    • 3
  1. 1.Institut de Recherche en Génie Civil et Mécanique (UMR CNRS 6183)Université de Nantes - Centrale NantesSaint-Nazaire cedexFrance
  2. 2.Institut Laue LangevinGrenobleFrance
  3. 3.ISIS, STFC Rutherford Appleton Laboratory Chilton DidcotOxfordshireU.K.

Personalised recommendations