Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 9, pp 4160–4173 | Cite as

In Situ Study of Microstructure Evolution in Solidification of Hypereutectic Al-Si Alloys with Application of Thermal Analysis and Neutron Diffraction

  • Dimitry G. SediakoEmail author
  • Wojciech Kasprzak
Article

Abstract

Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.

Keywords

Neutron Diffraction Solidus Temperature Solidification Path Engine Block Hypereutectic Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Renata Zavadil for assistance with metallographic work and Marta Aniolek MSc. Eng. for thermal analysis experiments. Financial support of the Materials for Energy End Use in Transformation Program of Natural Resources Canada is gratefully acknowledged. Studies completed at the Canadian Neutron Beam Centre (CNBC) were partially sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC). We gratefully acknowledge contributions made to this study by Drs. Ovidiu Garlea and Clarina de la Cruz, Oak Ridge National Laboratories. Moreover, we thank Ibrahim Sadiq and Matthew Li from University of Waterloo for their help with experimental data processing and graphical data representation during their co-op terms correspondingly at CanmetMATERIALS and CNBC.

References

  1. 1.
    J.L. Jorstad: AFS Trans., 2009, vol. 117, 241–49.Google Scholar
  2. 2.
    Y. P. Telang, “Process Variables in Al-21Si Alloys Refinement”, AFS Transactions, vol. 71, 232-240 (1963).Google Scholar
  3. 3.
    W. Kasprzak, J.H. Sokolowski, H. Yamagata, M. Sahoo, H. Kurita: Int. J. Met. Cast., 2009, vol. 3(3), pp. 55–73.Google Scholar
  4. 4.
    H. Yamagata, H. Kurita, M. Aniolek, W. Kasprzak, J. H. Sokolowski, “Thermal and Metallographic Characteristics of the Al-20%Si High-Pressure Die-Casting Alloy for Monolithic Cylinder Blocks,” Journal of Materials Processing Technology, vol. 199, no. 1-3, 84-90 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J. H. Sokolowski, “The Effect of Average Cooling Rates on the Microstructure of the Al-20%Si High Pressure Die Casting Alloy used for Monolithic Cylinder Blocks”, J. Mater. Process. Technol., vol. 203, 333-341 (2008).CrossRefGoogle Scholar
  6. 6.
    J.L. Jorstad, D. Apelian: Int. J. Met. Cast., 2009, vol. 3(3), pp. 13–43.Google Scholar
  7. 7.
    Backerüd, L.C., Solidification Characteristics of Aluminum Alloys, Vol. 2, Foundry Alloys, American Foundry Society Inc., Stockholm, 1990.Google Scholar
  8. 8.
    N.G. Tenekedjiev: Cast Met., 1990, vol. 3, 96–105.Google Scholar
  9. 9.
    Weiss, J. C., Loper, C. R., “Primary Si in Hypereutectic Aluminum-Silicon Castings,” Transactions of the American Foundry Society, 1987, vol. 95, pp 51-62.Google Scholar
  10. 10.
    Ghosh, S.M.: AFS Trans., 1964, vol. 72, pp. 721–32.Google Scholar
  11. 11.
    Y.P. Telang: Trans. Am. Foundry Soc., 1963, vol. 71, pp. 232–40.Google Scholar
  12. 12.
    P. Henslar: The New Porsche 944 4-Cylinder Aluminum Engine, SAE Paper, 1983, No. 830004.Google Scholar
  13. 13.
    J.L. Jorstad: Reynolds 390 Engine Technology, SAE Paper, 1983, No. 830010.Google Scholar
  14. 14.
    H. Kurita, H. Yamagata, H. Arai, T. Nakamura: SAE Technical Paper, SAE World Congress, Detroit, 2004.Google Scholar
  15. 15.
    W. Kasprzak, J.H. Sokolowski, H. Yamagata, M. Aniolek, and H. Kurita: J. Mater. Eng. Perform., 2011, vol. 20, 120–132.CrossRefGoogle Scholar
  16. 16.
    J.L. Jorstad and D. Apelian: Die Cast. Eng., 2004, vol. 48(3), pp. 50, 52, 54–56, 58.Google Scholar
  17. 17.
    Dehong, L.Y.: J. Mater. Process. Technol., 2007, vol. 189, pp. 13–18.CrossRefGoogle Scholar
  18. 18.
    H.U. Takagi, Mater. Trans., 2007, vol. 48, pp. 960–66.CrossRefGoogle Scholar
  19. 19.
    R.-Y. Wang and H.-Y. Lu: Trans. Am. Foundry Soc., 2007, vol. 117, pp. 241–48.Google Scholar
  20. 20.
    D. Sediako, F. D’Elia, A. Lombardi, A. Machin, C. Ravindran, C. Hubbard, and R. Mackay: SAE Int. J. Mater. Manuf., 2011, vol. 4, pp. 138–51.CrossRefGoogle Scholar
  21. 21.
    N. Iqbal, N.H. van Dijk, V.W.J. Verhoeven, W. Montfrooij, T. Hansen, L. Katgerman, and G.J. Kearley, “Experimental study of ordering kinetics in aluminum alloys during solidification”: Acta Mater., 2003, vol. 51, pp. 4497–4504.CrossRefGoogle Scholar
  22. 22.
    N. Iqbal, N.H. van Dijk, V.W.J. Verhoeven, T. Hansen, L. Katgerman, and G.J. Kearley, “Periodic structural fluctuations during the solidification of aluminum alloys studied by neutron diffraction”: Mater. Sci. Eng. A, 2004, vol. 367, pp. 82–88.CrossRefGoogle Scholar
  23. 23.
    W. Kasprzak, D. Sediako, M. Sahoo, M. Walker, and I. Swainson: Proceedings of TMS 2010, Supplemental Proceedings: Volume 1, Materials Processing and Properties, pp. 93–104.Google Scholar
  24. 24.
    W. Kasprzak, D. Sediako, M. Walker, M. Sahoo, and I. Swainson, “Solidification Analysis of an Al-19 Pct Si Alloy Using In-Situ Neutron Diffraction”, Metallurgical and Materials Transactions A, Volume 42A, July 2011, pp. 1854 – 1862.CrossRefGoogle Scholar
  25. 25.
    D. Sediako, W. Kasprzak, I. Swainson, and O. Garlea: Aluminum Alloys: Fabrication, Characterization and Applications, Supplemental Proceedings: Volume 2: Materials Fabrication, Properties, Characterization, and Modeling, The Minerals, Metals & Materials Society,TMS, San Diego, CA, February 2011, pp. 279–89.Google Scholar
  26. 26.
    W. Kasprzak, D. Sediako, M. Aniolek, and H. Kurita: 13th International Conference on Aluminum Alloys (ICAA13), 2013, pp. 1431–40.Google Scholar
  27. 27.
    M. Kasprzak, W. Kasprzak, W.T. Kierkus, and J.H. Sokolowski: U.S. Patent No. 7,354,491; Canadian Patent No. 2,470,127, 2009.Google Scholar
  28. 28.
    http://www.factsage.com. Accessed Aug 2011.
  29. 29.
    E. Sjolander and S. Seifeddine, “The heat treatment of Al-Si-Cu-Mg casting alloys,” J. Mater. Process. Technol., 210 (2010), 1249-1259.CrossRefGoogle Scholar
  30. 30.
    L.J. Colley, M.A. Wells, R. MacKay, and W. Kasprzak: Proceedings of the 26th ASM Heat Treating Society Conference, Cincinnati, OH, 2011.Google Scholar
  31. 31.
    G.I. Eskin and D.G. Eskin: Z. Metallkde., 2004, vol. 95(8), pp. 682–90.CrossRefGoogle Scholar
  32. 32.
    W. Wang, X. Bian, J. Qin, and S.I. Syliusarenko, “The Atomic-Structure Changes in Al-16 Pct Si Alloy above the Liquidus“, Metall. Mater. Trans. A, 31 (9) (2000) 2163–2168.CrossRefGoogle Scholar
  33. 33.
    J. Tamminen, Thermal Analysis for Investigation of Solidification Mechanisms in Metals and Alloys, Chemical Communications, University of Stockholm, Stockholm, 1988.Google Scholar
  34. 34.
    L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, Foundry Alloys, vol. 2, AFS/Skanaluminum, Des Plaines, IL, 1990, pp. 71–84.Google Scholar
  35. 35.
    Djurdjevic, M., Jiang, H., Sokolowski, J., “On-line prediction of aluminum-silicon eutectic modification level using thermal analysis”, Materials Characterization, Volume 46, Issue 1, January 2001, pp. 31-38.CrossRefGoogle Scholar
  36. 36.
    Mackay, R., Sokolowski, J., “Experimental observations of dendrite coarsening & Al-Si eutectic growth in progressively quenched structures of Al-Si-Cu casting alloys”, Int. J. Met. Cast., Vol. 2, No. 2, March 2008, pp. 77-80.Google Scholar
  37. 37.
    M.B. Djurdjevic, I. Vicario, G. Huber: Rev. Metal., 2014, vol. 50(1), pp. 3546.CrossRefGoogle Scholar
  38. 38.
    M.B. Djurdjevic, W. Kasprzak, C. A. Kierkus, W.T. Kierkus, and J.H. Sokolowski: Quantification of Cu Enriched Phases in Synthetic 3XX Aluminum Alloys Using the Thermal Analysis Technique, AFS Transactions, 15th Casting Congress, Dallas, 2001, pp. 1–12.Google Scholar
  39. 39.
    D.B. Sirdeshmukh, L. Sirdeshmukh, and K.G. Subhadra: in Micro- and Macro-Properties of Solids, Materials Science, 2006, vol. 80, ISBN: 978-3-540-31785-2, pp 77–133.Google Scholar
  40. 40.
    M.T. Hutchings, P.J. Withers, T.M. Holden, and T. Lorentzen: Introduction to the Characterization of Residual Stress by Neutron Diffraction, CRC Press, Boca Raton, 2005.Google Scholar
  41. 41.
    K. Nogita, S.D. McDonald, and A.K. Dahle: TMS Annual Meeting, SHAPE CASTING: 2nd International Symposium, Orlando, FL, 2007, Code 73625, pp. 51–58.Google Scholar
  42. 42.
    A.K. Dahle: 5th International Conference on Solidification and Gravity, Miskolc-Lillafured, Hungary, September 2008, Code 81394, 2010, vol. 649, pp. 287–93.Google Scholar
  43. 43.
    L. Salvo, P. Lhuissier, M. Scheel, S.A. Terzi, M. DiMichiel, E. Boller, J.A. Taylor, A.K. Dahle, M. Suéry: Trans. Indian Inst. Met., 2012, vol. 65(6), pp. 623–26.CrossRefGoogle Scholar
  44. 44.
    A. K. Dahle, K. Nogita, J. W. Zindel, S. D. McDonald and L.M. Hogan, “Eutectic Nucleation and Growth in Hypoeutectic Al-Si Alloys at Different Strontium Levels”, Metallurgical & Materials Transactions A, 2001, Vol. 32A No 4, pp. 949-960.CrossRefGoogle Scholar
  45. 45.
    J.W. Zindel, G. Goldewski, and D. Donlon: Modeling of Casting, Welding & Advanced Solidification Processes VII, TMS, San Diego, 1998, June 7–12.Google Scholar
  46. 46.
    E. Talaat and H. Fredriksson: Mater. Trans., 2000, vol. 41(4), pp. 507–15.CrossRefGoogle Scholar

Copyright information

© Published with permission of Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources 2015

Authors and Affiliations

  1. 1.Canadian Neutron Beam CentreChalk RiverCanada
  2. 2.CanmetMATERIALS, Natural Resources CanadaHamiltonCanada

Personalised recommendations