Metallurgical and Materials Transactions A

, Volume 46, Issue 10, pp 4610–4628 | Cite as

Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

  • Mark A. Tschopp
  • Jonathan D. Miller
  • Andrew L. Oppedal
  • Kiran N. Solanki
Symposium: Multiscale Microstructure, Mechanics and Prognosis of High Temperature Alloys

Abstract

Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process–structure–property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

Notes

Acknowledgments

The authors would like to acknowledge AFOSR for support for this research through contract FA9550-12-1-0135 (PM: Dr. David Stargel, AFOSR/RSA). The authors would like to acknowledge initial discussions with M. Groeber (Air Force Research Laboratory) in the beginning stages of this project. Additionally, the authors acknowledge R. Carino (Center for Advanced Vehicular Systems, Mississippi State University) for helping implement the scripts utilized herein into a more user-friendly GUI environment.

References

  1. 1.
    R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, 2006Google Scholar
  2. 2.
    T.M. Pollock, S. Tin, J. Propul. Power 22, 361–374 (2006)CrossRefGoogle Scholar
  3. 3.
    H.S. Whitesell, R.A. Overfelt, Mater. Sci. Eng., A 318, 264–276 (2001)CrossRefGoogle Scholar
  4. 4.
    A.J. Elliott, S. Tin, W.T. King, S.C. Huang, M.F.X. Gigliotti, T.M. Pollock, Metall. Mater. Trans. A 35A, 3221–3231 (2004)CrossRefGoogle Scholar
  5. 5.
    M.L.N.M. Melo, E.M.S. Rizzo, R.G. Santos, J. Mater. Sci. 40, 1599–1609 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Lamm, R.F. Singer, Metall. Mater. Trans. A 38A, 1177–1183 (2007)CrossRefGoogle Scholar
  7. 7.
    C.L. Brundidge, D. Vandrasek, B. Wang, T.M. Pollock, Metall. Mater. Trans. A 43A, 965–976 (2012)CrossRefGoogle Scholar
  8. 8.
    P.N. Quested, M. McLean, Mater. Sci. Eng. 65, 171–180 (1984)CrossRefGoogle Scholar
  9. 9.
    V.A. Wills, D.G. McCartney, Mater. Sci. Eng., A 145, 223–232 (1991)CrossRefGoogle Scholar
  10. 10.
    D.G. McCartney, J.D. Hunt, Acta Metall. 29, 1851–1863 (1981)CrossRefGoogle Scholar
  11. 11.
    L. Li, R.A. Overfelt, Journal of Materials Science 37, 3521–3532 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Hui, R. Tiwari, X. Wu, S.N. Tewari, R. Trivedi, Metall. Mater. Trans. A 33, 3499–3510 (2002)CrossRefGoogle Scholar
  13. 13.
    W. Wang, P.D. Lee, M. McLean, Acta Mater. 51, 2971–2987 (2003)CrossRefGoogle Scholar
  14. 14.
    J.D. Miller and T.M. Pollock: Development and Application of an Optimization Protocol for Directional Solidification: Integrating Fundamental Theory, Experimentation and Modeling Tools, Wiley, pp. 653–62, Superalloys 2012Google Scholar
  15. 15.
    C.L. Brundidge, J.D. Miller, T.M. Pollock, Metall. Mater. Trans. A 42A, 2723–2732 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Liu, T.W. Huang, J. Zhang, H.Z. Fu, Materials Letters 61, 227–230 (2007)CrossRefGoogle Scholar
  17. 17.
    F. Wang, D.X. Ma, J. Zhang, S. Bogner, A. Buhrig-Polaczek, Journal of Materials Processing Technology 214, 3112–21 (2014)CrossRefGoogle Scholar
  18. 18.
    B.C. Wilson, E.R. Cutler, G.E. Fuchs, Mater. Sci. Eng., A 479, 356–364 (2008)CrossRefGoogle Scholar
  19. 19.
    A.F. Giamei, J.G. Tschinkel, Metall. Trans. A 7, 1427–1434 (1976)CrossRefGoogle Scholar
  20. 20.
    A. Lohmüller, W. Eßer, J. Großmann, M. Hördler, J. Preuhs, and R.F. Singer: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McClean, S. Olson, and J.J. Schirra, eds., The Minerals, Metals & Materials Society (TMS), 2000 pp. 181–88.Google Scholar
  21. 21.
    M.M. Franke, R.M. Hilbinger, A. Lohmüller, R.F. Singer, J. Mater. Process. Technol. 213, 2081–2088 (2013)CrossRefGoogle Scholar
  22. 22.
    T. Zhang, W.L. Ren, J.W. Dong, X. Li, Z.M. Ren, G.H. Cao, Y.B. Zhong, K. Deng, Z.S. Lei, J.T. Guo, Journal of Alloys and Compounds 487, 612–617 (2009)CrossRefGoogle Scholar
  23. 23.
    X. Li, Z.M. Ren, J. Wang, Y.F. Han, B.D. Sun, Materials Letters 67, 205–209 (2012)CrossRefGoogle Scholar
  24. 24.
    W.D. Xuan, Z.M. Ren, C.J. Li, Journal of Alloys and Compounds 620, 10–17 (2015)CrossRefGoogle Scholar
  25. 25.
    M.A. Tschopp, M.A. Groeber, R. Fahringer, J.P. Simmons, A.H. Rosenberger, C. Woodward, Scr. Mater. 62, 357–360 (2010)CrossRefGoogle Scholar
  26. 26.
    S.N. Tewari, R.N. Grugel, D.R. Poirier, Metall. Mater. Trans. A 45, 4758–4761 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Tewari, R. Grugel, D. Poirier, Metallurgical and Materials Transactions A 45, 4758–4761 (2014)CrossRefGoogle Scholar
  28. 28.
    M.C. Flemings, Metall. Trans. 5, 2121–2134 (1974)CrossRefGoogle Scholar
  29. 29.
    H. Jacobi, K. Schwerdtfeger, Metall. Trans. A 7A, 811–820 (1976)CrossRefGoogle Scholar
  30. 30.
    X.B. Zhao, L. Liu, W.G. Zhang, Z.H. Yu, H.Z. Fu, Materials Chemistry and Physics 125, 55–58 (2011)CrossRefGoogle Scholar
  31. 31.
    S.N. Tewari, Y.H.S. Weng, G.L. Ding, R. Trivedi, Metall. Mater. Trans. A 33, 1229–1243 (2002)CrossRefGoogle Scholar
  32. 32.
    U. Paul, P.R. Sahm, D. Goldschmidt, Mater. Sci. Eng., A 173, 49–54 (1993)CrossRefGoogle Scholar
  33. 33.
    M.A. Tschopp, J.D. Miller, A.L. Oppedal, K.N. Solanki, Metall. Mater. Trans. A 45, 426–437 (2014)CrossRefGoogle Scholar
  34. 34.
    J.D. Miller: Ph.D. Thesis, University of Michigan, 2011Google Scholar
  35. 35.
    M.A. Tschopp, G.B. Wilks, J.E. Spowart, Modell. Simul. Mater. Sci. Eng. 16, 065009 (2008)CrossRefGoogle Scholar
  36. 36.
    N. Warnken, R.C. Reed, Metall. Mater. Trans. A 42A, 1675–1683 (2011)CrossRefGoogle Scholar
  37. 37.
    N. Warnken and R.C. Reed: IOP Conference Series: Materials Science and Engineering, 2011, vol. 27 pp. 1–5Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Mark A. Tschopp
    • 1
  • Jonathan D. Miller
    • 2
  • Andrew L. Oppedal
    • 3
  • Kiran N. Solanki
    • 4
  1. 1.US Army Research LaboratoryAberdeen Proving GroundUSA
  2. 2.Air Force Research LaboratoryWright-Patterson AFBUSA
  3. 3.Center for Advanced Vehicular SystemsMississippi State UniversityMississippi StateUSA
  4. 4.School for Engineering of Matter, Transport, and EnergyArizona State UniversityTempeUSA

Personalised recommendations