Metallurgical and Materials Transactions A

, Volume 46, Issue 7, pp 2947–2955 | Cite as

Design of an Eta-Phase Precipitation-Hardenable Nickel-Based Alloy with the Potential for Improved Creep Strength Above 1023 K (750 °C)

  • Matthew J. Wong
  • Paul G. Sanders
  • John P. Shingledecker
  • Calvin L. White
Article

Abstract

In a number of nickel-based superalloy systems strengthened by gamma prime (γ′), eta-phase (Ni3Ti, η) forms during prolonged high-temperature exposure, but its effect on mechanical properties is not well characterized. Using thermodynamic modeling and design-of-experiments techniques, three modifications of the nickel-based superalloy Nimonic (Nimonic® is a trademark of Special Metals Corporation group of companies.) 263 were identified that yield increased volume fractions of the eta-phase (Ni3Ti, η) at temperatures above 1023 K (750 °C). Volume fractions of η-phase were evaluated for each alloy and heat-treatment condition using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Compared to Nimonic 263, small additions of V and Ta were found to increase the volume fraction of η-phase above 1023 K (750 °C) from approximately 5 pct to above 15 pct, thus providing a route for future mechanical behavior experimental studies, which was not in the scope of this work.

Keywords

Ni3Al Ni3Ti Increase Volume Fraction Large Volume Fraction Ni3Nb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Bruce Pint and Michael Santella of Oak Ridge National Laboratory are acknowledged for their support in melting the alloy compositions. The support of EPRI’s Technology Innovation Program on Advanced Materials, Program manager David Gandy, and initial research support from Peter Enz, Bryan Turner, and Ben Wittbrodt, is greatly acknowledged.

References

  1. 1.
    J.P. Shingledecker and I.G. Wright: Proceedings to the 8th Liege Conference on Materials for Advanced Power Engineering 2006, Forschungszentrum Jülich GmbH, 2006, pp. 107–120.Google Scholar
  2. 2.
    R. Viswananthan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert. J. Mater. Eng. Perform. Vol. 14(3) 2005, 281–92.CrossRefGoogle Scholar
  3. 3.
    J.P. Shingledecker, G.M. Pharr: Metall. Mater. Trans. A., Vol. 43 (2012). 1902–10. doi: 10.1007/s11661-011-1013-4.CrossRefGoogle Scholar
  4. 4.
    J.P. Shingledecker, N.D. Evans, G.M. Pharr: Mater. Sci. Eng. A. 578 (2013) 277–86. doi: 10.1016/j.msea.2013.04.087.CrossRefGoogle Scholar
  5. 5.
    N.D Evans, P.J. Maziasz, R.W. Swindeman, G.D. Smith (2004). Scripta Mater. 51: 503–07.CrossRefGoogle Scholar
  6. 6.
    J.C. Zhao, V. Ravikumar, A.M. Beltran (2001) Metall. Mater. Trans. A 32A: 1271–82.CrossRefGoogle Scholar
  7. 7.
    C.T. Sims, N. S. Stoloff, W.C. Hagel (1987) Superalloys II: High-Temperature Materials for Aerospace and Industrial Power. Wiley, New YorkGoogle Scholar
  8. 8.
    M.J. Donachie (1984). Superalloys: A Technical Guide. Metals Park, Ohio, American Society for Metals.Google Scholar
  9. 9.
    R.C. Ecob, J. V. Bee, B. Ralph (1979) J. Microsc. 161: 141–50.CrossRefGoogle Scholar
  10. 10.
    H. Sugimura, Y. Kaneno, T. Takasugi (2010). Mater. Trans. 51(1): 72–77.CrossRefGoogle Scholar
  11. 11.
    H. Sugimura, Y. Kaneno, T. Takasugi (2011). “Alloying Behavior of Ni3M-Type Compounds with D0a Structure.” Materials Transactions 52 (4): 667–71.CrossRefGoogle Scholar
  12. 12.
    S. Asgari, R. Sharghi-Moshtaghin, M. Sadegh-Ahmadi, P. Pirouz. (2013). Philosophical Magazine 93(10-12): 1351–70.CrossRefGoogle Scholar
  13. 13.
    K. Tomihisa, Y. Kaneno, T. Takasugi (2002). Intermetallics 10: 247–54.CrossRefGoogle Scholar
  14. 14.
    W. Soga, Y. Kaneno, T. Takasugi (2006) Intermetallics 14: 170–79.CrossRefGoogle Scholar
  15. 15.
    R.E. Watson, L.H. Bennett (1978) Phys. Rev. B 18(12): 6439–49.CrossRefGoogle Scholar
  16. 16.
    B.D. Cullity, S.R. Stock (2001). Elements of X-Ray Diffraction. Upper Saddle River, Prentice Hall, NJ.Google Scholar
  17. 17.
    G.F. Vander Voort (1984). Metallography, Principles and Practice, ASM International, Metals Park.Google Scholar
  18. 18.
    S. Asgari (2006). Metall. Mater. Trans. A. 37A: 2051–57.CrossRefGoogle Scholar
  19. 19.
    G.V.S. Murthy, S. Ghosh, M. Das, G. Das, R.N. Ghosh (2007) Mater. Sci. Eng. A. 488: 298-405.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Matthew J. Wong
    • 1
  • Paul G. Sanders
    • 1
  • John P. Shingledecker
    • 2
  • Calvin L. White
    • 1
  1. 1.Department of Materials Science & EngineeringMichigan UniversityHoughtonUSA
  2. 2.Electric Power Research InstituteCharlotteUSA

Personalised recommendations