Metallurgical and Materials Transactions A

, Volume 46, Issue 9, pp 3842–3851 | Cite as

A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V

  • Marco Simonelli
  • Chris Tuck
  • Nesma T. Aboulkhair
  • Ian Maskery
  • Ian Ashcroft
  • Ricky D. Wildman
  • Richard Hague
Symposium: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

Abstract

The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology relies on the comprehension of the events that take place during the melting and solidification of the powder bed. This study was designed to understand the generation of the laser spatter that is commonly observed during SLM and the potential effects that the spatter has on the processing of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. With the exception of Ti-6Al-4V, the characterization of the laser spatter revealed the presence of surface oxides enriched in the most volatile alloying elements of the materials. The study will discuss the implication of this finding on the material quality of the built parts.

Keywords

Laser Welding Additive Manufacture 316L Stainless Steel Selective Laser Melting Metallic Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Hopkinson, R. Hague and P. Dickens: Rapid Manufacturing: An Industrial Revolution for the Digital Age, John Wiley, Chichester, England, 2006, pp. 175-245.Google Scholar
  2. 2.
    B. Liu, R. Wildman, C. Tuck, I. Ashcroft, and R. Hague: Proc. 23rd Annu. Int. Solid Free. Fabr. Symp., 2011, pp. 227–38.Google Scholar
  3. 3.
    J. K. L. Thijs, F. Verhaeghe, T. Craeghs and J.V. Humbeeck: Acta Mater., 2010, 58, 9, pp. 3303-3312.CrossRefGoogle Scholar
  4. 4.
    N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, and C. Tuck: Addit. Manuf., 2014, 1-4, pp.77-86.CrossRefGoogle Scholar
  5. 5.
    N. Read, W. Wang, K. Essa and M. M. Attallah: Mater. Des, 2015, 65, pp. 417-424.CrossRefGoogle Scholar
  6. 6.
    M. Simonelli, C. Tuck and Y.Y. Tse: Mater. Sci. Eng. A, 2014, 616, pp. 1-11.CrossRefGoogle Scholar
  7. 7.
    I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson,and I. Smurov: J. Mater. Process. Technol., 2013, 213, pp. 606-613.CrossRefGoogle Scholar
  8. 8.
    W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs, D. E. Hahn, C. Kamath and A. M. Rubenchik: J. Mater. Process. Technol., 2014, 214, pp. 2915-2925.CrossRefGoogle Scholar
  9. 9.
    S. Das: Adv. Eng. Mater., 2003, 5, pp. 701- 711.CrossRefGoogle Scholar
  10. 10.
    E. Louvis, P. Fox and C. J. Sutcliffe: J. Mater. Process. Technol., 2011, 211, pp. 275-284.CrossRefGoogle Scholar
  11. 11.
    E. O. Olakanmi: J. Mater. Process. Technol.,2013, 213, pp. 1387-1405.CrossRefGoogle Scholar
  12. 12.
    X. J. Wang, L. C. Zhang, M. H. Fang and T. B. Sercombe: Mater. Sci. Eng. A, 2014, 597, pp. 370-375.CrossRefGoogle Scholar
  13. 13.
    F. Verhaeghe, T. Craeghs, J. Heulens and L. Pandelaers: Acta Mater., 2009, 57, pp. 6006-6012.CrossRefGoogle Scholar
  14. 14.
    M. J. Zhang, G. Y. Chen, Y. Zhou, S. C. Li and H. Deng: Appl. Surf. Sci., 2013, 280, pp. 868-875.CrossRefGoogle Scholar
  15. 15.
    D. K.. Low, L. Li and P.. Byrd: J. Mater. Process. Technol.,2003, 139, pp. 71-76.CrossRefGoogle Scholar
  16. 16.
    S. Li, G. Chen, S. Katayama and Y. Zhang, Appl. Surf. Sci., 2014, 303, pp. 481-488.CrossRefGoogle Scholar
  17. 17.
    A. F. H. Kaplan and J. Powell: J. Laser Appl., 2011, 23, pp. 1-8.Google Scholar
  18. 18.
    G. Krauss: Steels: processing, structure and performance, ASM International, Materials Park, OH, 2005, pp. 495-534.Google Scholar
  19. 19.
    B. Liu: Doctoral Thesis, Loughborough University, 2013, pp. 148–50.Google Scholar
  20. 20.
    M. Simonelli: Doctoral Thesis, Loughborough University, 2014, pp. 76–82.Google Scholar
  21. 21.
    L. Thijs, K. Kempen, J.-P. Kruth and J. Van Humbeeck: Acta Mater., 2013, 61, pp. 1809-1819.CrossRefGoogle Scholar
  22. 22.
    P. R. Wilson and Z. Chen: Corros. Sci., 2007, 49, pp. 1305-1320.CrossRefGoogle Scholar
  23. 23.
    E. Hryha, C. Gierl, L. Nyborg, H. Danninger and E. Dudrova: Appl. Surf. Sci., 2010, 256, pp. 3946-3961.CrossRefGoogle Scholar
  24. 24.
    P. R. Wilson and Z. Chen: Scripta Mater., 2005, 53, pp. 119-123.CrossRefGoogle Scholar
  25. 25.
    A. F. Smitll and R. Hales: Met. Sci., 1975 9, pp. 181-184.CrossRefGoogle Scholar
  26. 26.
    Y.F. Gong, S. Birosca, H. S. Kim and B.C.D. Cooman: J. Microsc., 2008, 230, pp. 424-434.CrossRefGoogle Scholar
  27. 27.
    H.J. Grabke, V. Leroy and H. Viefhaus: Iron Steel Inst. Japan, 1995, 35, pp. 95-113.CrossRefGoogle Scholar
  28. 28.
    E. Hryha, E. Dudrova, and L. Nyborg: Metall. Mater. Trans. A, 2010, 41, pp. 2880-2897.CrossRefGoogle Scholar
  29. 29.
    J. J. Dunkley: Powder Metal Technologies and Applications, ASM International, Materials Park, OH, 1998, pp. 35-52.Google Scholar
  30. 30.
    N.S. Stoloff: Wrought and Powder Metallurgy (P/M) Superalloys, ASM International, Materials Park, OH, 1998, pp. 1478-1527.Google Scholar
  31. 31.
    H. Karlsson, L. Nyborg and S. Berg: Powder Metall., 2005, 48, pp. 51-58.CrossRefGoogle Scholar
  32. 32.
    S. Das, M. Wohlert, J.J. Beaman and D.L. Bourell: JoM, 1998, 12, pp. 17-20.CrossRefGoogle Scholar
  33. 33.
    D. Chasoglou, E. Hryha and L. Nyborg: Mater. Chem. Phys., 2013, 138, pp. 405-415.CrossRefGoogle Scholar
  34. 34.
    A.V. Krajnikov, V.V. Likutin and G.E. Thompson: Appl. Surf. Sci., 2003, 210, pp. 318-328.CrossRefGoogle Scholar
  35. 35.
    R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu and W. Jiang: Appl. Surf. Sci., 2010, 256, pp. 4350-4256.CrossRefGoogle Scholar
  36. 36.
    K. A. Mumtaz and N. Hopkinson: J. Mater. Process. Technol., 2010, 210, pp. 279-287.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Marco Simonelli
    • 1
  • Chris Tuck
    • 1
  • Nesma T. Aboulkhair
    • 1
  • Ian Maskery
    • 1
  • Ian Ashcroft
    • 1
  • Ricky D. Wildman
    • 1
  • Richard Hague
    • 1
  1. 1.University of NottinghamNottinghamUK

Personalised recommendations