Metallurgical and Materials Transactions A

, Volume 46, Issue 9, pp 3816–3823 | Cite as

Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

  • Stefan Leuders
  • Malte Vollmer
  • Florian Brenne
  • Thomas Tröster
  • Thomas Niendorf
Symposium: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control


Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.


Fatigue Strength Additive Manufacturing Area Model Selective Laser Melting Fatigue Crack Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Direct Manufacturing Research Center (DMRC), its industry partners and the state of North Rhine Westphalia for financial support of the present study.


  1. 1.
    G.N. Levy, R. Schindel, and J.P. Kruth: CIRP Ann., 2003, vol. 52, pp. 589–609.CrossRefGoogle Scholar
  2. 2.
    K.V. Wong and A. Hernandez: ISRN Mech. Eng., 2012, vol. 2012, pp. 1–10.CrossRefGoogle Scholar
  3. 3.
    I. Campbell, D.L. Bourell, and I. Gibson: Rapid Prototyping J., 2012, vol. 18, pp. 255–58.CrossRefGoogle Scholar
  4. 4.
    S. Masood and W. Song: Mater. Des., 2004, vol. 25, pp. 587–94.CrossRefGoogle Scholar
  5. 5.
    D.L. Bourell, T.J. Watt, D.K. Leigh, and B. Fulcher: Phys. Procedia, 2014, vol. 56, pp. 147–56.CrossRefGoogle Scholar
  6. 6.
    W.E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–28.CrossRefGoogle Scholar
  7. 7.
    L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1–14.CrossRefGoogle Scholar
  8. 8.
    S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier: Int. J. Fatigue, 2013, vol. 48, pp. 300–07.CrossRefGoogle Scholar
  9. 9.
    A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf: Eng. Fract. Mech., 2014, vol. 120, pp. 15–25.CrossRefGoogle Scholar
  10. 10.
    B. Vrancken, L. Thijs, J.-P. Kruth, and J. van Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177–85.CrossRefGoogle Scholar
  11. 11.
    L. Thijs, F. Verhaeghe, T. Craeghs, J. van Humbeeck, and J.-P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.CrossRefGoogle Scholar
  12. 12.
    T. Niendorf and F. Brenne: Mater. Charact., 2013, vol. 85, pp. 57–63.CrossRefGoogle Scholar
  13. 13.
    B. Song, S. Dong, Q. Liu, H. Liao, and C. Coddet: Mater. Des., 2014, vol. 54, pp. 727–33.CrossRefGoogle Scholar
  14. 14.
    M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe: CIRP Ann., 2004, vol. 53, pp. 195–98.CrossRefGoogle Scholar
  15. 15.
    G. Strano, L. Hao, R.M. Everson, and K.E. Evans: J. Mater. Process. Technol., 2013, vol. 213, pp. 589–97.CrossRefGoogle Scholar
  16. 16.
    I. Yadroitsev and I. Smurov: Phys. Procedia, 2011, vol. 12, pp. 264–70.CrossRefGoogle Scholar
  17. 17.
    S. Leuders, T. Lieneke, S. Lammers, T. Tröster, and T. Niendorf: J. Mater. Res., 2014, vol. 29, pp. 1911–19.CrossRefGoogle Scholar
  18. 18.
    E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder: Mater. Des., 2012, vol. 34, pp. 159–69.CrossRefGoogle Scholar
  19. 19.
    E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann: Phys. Procedia, 2014, vol. 56, pp. 371–78.CrossRefGoogle Scholar
  20. 20.
    Y. Murakami and M. Endo: Int. J. Fatigue, 1994, vol. 16, pp. 163–82.CrossRefGoogle Scholar
  21. 21.
    H. Danninger and B. Weiss: J. Mater. Process. Technol., 2003, 143-144, pp. 179–84.CrossRefGoogle Scholar
  22. 22.
    Y. Murakami: Metal fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Oxford, Boston, 2002, pp. 57-74.CrossRefGoogle Scholar
  23. 23.
    T. Mann: Int. J. Fatigue, 2007, vol. 29, pp. 1393–1401.CrossRefGoogle Scholar
  24. 24.
    A. Spagnoli: Chaos, Solitons Fractals, 2004, vol. 22, pp. 589–98.CrossRefGoogle Scholar
  25. 25.
    D. Dini, D. Nowell, and I.N. Dyson: Tribol. Int., 2006, vol. 39, pp. 1158–65.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Stefan Leuders
    • 1
    • 2
  • Malte Vollmer
    • 3
  • Florian Brenne
    • 1
    • 4
  • Thomas Tröster
    • 1
    • 2
  • Thomas Niendorf
    • 3
  1. 1.DMRC (Direct Manufacturing Research Center)University of PaderbornPaderbornGermany
  2. 2.Lehrstuhl für Leichtbau im Automobil (Automotive Lightweight Construction)University of PaderbornPaderbornGermany
  3. 3.Institut für Werkstofftechnik (Materials Engineering)FreibergGermany
  4. 4.Lehrstuhl für Werkstoffkunde (Materials Science)PaderbornGermany

Personalised recommendations