Metallurgical and Materials Transactions A

, Volume 46, Issue 7, pp 2884–2892 | Cite as

Contactless Ultrasound Generation in a Crucible

  • Valdis Bojarevics
  • Georgi S. Djambazov
  • Koulis A. Pericleous
Symposium: Advances in Solidification of Metallic Alloys under External Fields

Abstract

Ultrasound treatment is used in light alloys during solidification to refine microstructure, remove gas, or disperse immersed particles. A mechanical sonotrode immersed in the melt is most effective when probe tip vibrations lead to cavitation. Liquid contact with the probe can be problematic for high temperature or reactive melts leading to contamination. An alternative contactless method of generating ultrasonic waves is proposed, using electromagnetic (EM) induction. As a bonus, the EM force induces vigorous stirring distributing the effect to treat larger volumes of material. In a typical application, the induction coil surrounding the crucible—also used to melt the alloy—may be adopted for this purpose with suitable tuning. Alternatively, a top coil, immersed in the melt (but still contactless due to EM force repulsion) may be used. Numerical simulations of sound, flow, and EM fields suggest that large pressure amplitudes leading to cavitation may be achievable with this method.

References

  1. 1.
    J. Campbell: Int. Met. Rev., 1981, vol. 26, no. 2, pp. 71–108.Google Scholar
  2. 2.
    O. Abramov: Ultrasound in Liquid and Solid Metals, CRC Press, Boca Raton, FL, 1994, p. 289.Google Scholar
  3. 3.
    G.I. Eskin and D.G. Eskin: Ultrason. Sonochem., 2003, vol. 10, no. 4–5, pp. 297–301.CrossRefGoogle Scholar
  4. 4.
    W.W. Xu, I. Tzanakis, P. Srirangam, S. Terzi, W.U. Mirihanage, D.G. Eskin, and P.D. Lee: In situ Synchrotron Radiography of Ultrasound Cavitation in a Molten Al-10Cu Allo y; TMS2015 144th Annual Meeting & Exhibition; 15–19 March, 2015, in press.Google Scholar
  5. 5.
    C. Vives: J. Cryst. Growth, 1996, vol. 158, no. 1–2, pp. 118–27.CrossRefGoogle Scholar
  6. 6.
    A. Verma, S.P. Tewari, and J. Prakash: Int. J. Eng. Sci. Technol., 2011, vol. 3, no. 6, pp. 5215–20.Google Scholar
  7. 7.
    J. Dong, J. Cui, X. Zeng, and W. Ding: Mater. Trans., 2005, vol. 46, no. 1, pp. 94–99.CrossRefGoogle Scholar
  8. 8.
    G. Djambazov, V. Bojarevics, B. Lebon, and K. Pericleous: Contactless Acoustic Wave Generation in a Melt by Electromagnetic Induction, TMS Annual Meeting, Light Metals 2014, John Grandfield, eds., TMS, 2014, pp. 1379–82.Google Scholar
  9. 9.
    K. Pericleous and V. Bojarevics: Progr. Comput. Fluid Dyn., 2007, vol. 7, nos. 2/3/4, pp. 118–27.CrossRefGoogle Scholar
  10. 10.
    V. Bojarevics, R.A. Harding, K.A. Pericleous, and M. Wickins: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 785–803.CrossRefGoogle Scholar
  11. 11.
    H. Alehossein and Z. Qin: Int. J. Numer. Methods Eng., 2007, vol. 72, pp. 780–807.CrossRefGoogle Scholar
  12. 12.
    G.S.B. Lebon, K. Pericleous, I. Tzanakis, and D. Eskin: Advances in the Science and Engineering of Casting Solidification: An MPMD Symposium Honoring Doru Stefanescu, in press.Google Scholar
  13. 13.
    D.C. Wilcox: Turbulence Modelling for CFD, 2nd ed., DCW Industries, California, 1998.Google Scholar
  14. 14.
    A. Bojarevics, V. Bojarevics, J. Gelfgat, and K. Pericleous: Magnetohydrodynamics, 1999, vol. 35, no. 3, pp. 258–77.Google Scholar
  15. 15.
    G.S. Djambazov, CH. Lai, and K.A. Pericleous: AIAA J., 2000, vol. 38, no. 1, pp. 16–21.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Valdis Bojarevics
    • 1
  • Georgi S. Djambazov
    • 1
  • Koulis A. Pericleous
    • 1
  1. 1.Centre for Numerical Modelling and Process AnalysisUniversity of GreenwichLondonUK

Personalised recommendations