Metallurgical and Materials Transactions A

, Volume 46, Issue 6, pp 2646–2663 | Cite as

Effect of Alloying Elements in Hot-Rolled Metastable β-Titanium Alloys: Part I. Evolution of Microstructure and Texture

  • Premkumar Manda
  • P. Ghosal
  • Uday Chakkingal
  • A. K. Singh
Article

Abstract

The present work describes the evolution of microstructures and textures in alloys Ti-5Al-5Mo-5V-3Cr (A1), Ti-5Al-3.5Mo-7.2V-3Cr (A2), Ti-5Al-5Mo-8.6V-1.5Cr (A3), and Ti-5Al-3.5Mo-5V-3.94Cr (A4) during unidirectional hot rolling. The hot-rolled microstructures of the alloy A1 exhibit large fraction of recovered/recrystallized grains, while the alloy A3 shows small fraction of recovered/recrystallized grains. The alloy A2 displays subgrains and recrystallized grains, while the alloy A4 exhibits the microstructure consisting of the features of both the alloys A1 and A2. The alloys A1, A3, and A4 show the presence of shear bands within the β grains and also small volume fraction of the α phase. The dominance of deformation and/or recrystallization components in respective α and γ fibers varies with alloy compositions and hot rolling reductions. In alloys A1 and A2, deformation components dominate from 30 to 50 pct rolling reductions, while recrystallization components govern in 70 pct rolled samples. The deformation components prevail from 30 to 70 pct rolling reductions in alloy A3. The alloy A4 exhibits softening of texture due to recovery or early stage of recrystallization from 30 to 50 pct reductions, while texture present in 70 pct rolled sample consists of mainly the deformation components. The role of molybdenum appears to be quite critical in the evolution of microstructures and textures of these alloys. The alloys with low and high Mo contents display high and low amount of the α phase, respectively.

References

  1. 1.
    D. Qin, Y. Lu, Q. Liu, and L. Zhou: Mater. Sci. Eng. A, 2013, vol. A56, pp. 460-467.CrossRefGoogle Scholar
  2. 2.
    D. Qin, Y. Lu, K. Zhang, Q. Liu, and L. Zhou: Mater. char, 2012, vol. 73, pp. 77-80.CrossRefGoogle Scholar
  3. 3.
    E.W. Collings: Physical metallurgy of Titanium alloys, ASM, Materials Park, OH, 1984.Google Scholar
  4. 4.
    D. Qin, Y. Lu, Q. Liu, L. Zheng, and L. Zhou: Mater. Sci. Eng. A, 2013, vol. A572, pp. 19–24.CrossRefGoogle Scholar
  5. 5.
    J.C. Fanning and R.R. Boyer: in Titanium 2003: Science and Technology, G. Luetjering and J. Albrecht, eds., Wiley-VCH, Hamburg, Germany, 2003, vol. IV, pp. 2643–50.Google Scholar
  6. 6.
    J.D. Cotton, R.R. Boyer, and R.D. Briggs, R.G. Baggerly, C.A. Meyer, M.D. Carter, W. Wood, G. Tewksbury, V. Li, and X. Yao: Titanium 2007: Science and Technology, M. Niinomi, S. Akiyama, M. Hagiwara, M. Ikeda, and K. Maruyama, eds., The Japan Institute of Metals, Kyoto, Japan, 3–7 June, 2007, vol. I, pp. 471–74.Google Scholar
  7. 7.
    A. Settefrati, M. Dehmas, G. Geandier, B. Denand, E.A.-Gautier, B. Appolaire, G. Khelifati, and J. Delfosse: Titanium 2011: Science and Technology, L. Zhou, H. Chang, Y. Lu, and D. Xu, eds., Science Press, Beijing, 19–24 June 2011, vol. I, pp. 468–72.Google Scholar
  8. 8.
    R.R. Boyer and R.D. Briggs: J. Mater. Eng. Perform., 2005, vol. 14, pp. 681-685.CrossRefGoogle Scholar
  9. 9.
    R.R. Boyer: J. Met., 1994, vol. 46, pp. 20-23.Google Scholar
  10. 10.
    A. Hasegawa, S. Ishigai, and T. Matsushita: 6th World Conf. on Titanium, P. Lacombe, R. Tricot, and G. Beranger, eds., Les Editions de Physique, Les Ulis, Cannes, France, 1988, pp. 1263–68.Google Scholar
  11. 11.
    A. Ghosh, S. Sivaprasad, A. Bhattacharjee, and S. K. Kar: Mater. Sci. Engg. A, 2013, vol. A568, pp. 61-67.CrossRefGoogle Scholar
  12. 12.
    J.C. Fanning, S.L. Nyakana, K.M. Patterson, and R.C. McDaniel: Titanium 2007: Science and Technology, M. Niinomi, S. Akiyama, M. Hagiwara, M. Ikeda, and K. Maruyama, eds., The Japan Institute of Metals, Kyoto, Japan, 3–7 June, 2007, vol. I, pp. 499–502.Google Scholar
  13. 13.
    V. Venkatesh, M. Kamal, and J. Fanning: Titanium 2007: Science and Technology, M. Niinomi, S. Akiyama, M. Hagiwara, M. Ikeda, and K. Maruyama, eds., The Japan Institute of Metals, Kyoto, Japan, 3–7 June, 2007, vol. I, pp. 503–06.Google Scholar
  14. 14.
    N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye: Scripta Mater., 2009, vol. 60, pp. 571- 573.CrossRefGoogle Scholar
  15. 15.
    N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye: Acta Mater., 2009, vol. 57, pp. 3830-3839.CrossRefGoogle Scholar
  16. 16.
    S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser: Acta Mater., 2009, vol. 57, pp. 2136-2147.CrossRefGoogle Scholar
  17. 17.
    P.J. Arrazola, A. Garay, L.M. Iriarte, M. Armendia, S. Marya, and F. Le Maitre: J. Mater. Proc. tech, 2009, vol. 209, pp. 2223-2230.CrossRefGoogle Scholar
  18. 18.
    N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson: Mater. Sci. Engg. A, 2008, vol. A490, pp. 369-377.CrossRefGoogle Scholar
  19. 19.
    A. Dehghan-Manshadi and R.J. Dippenaar: Mater. Sci. Engg. A, 2011, vol. A528, pp. 1833- 1839.CrossRefGoogle Scholar
  20. 20.
    I. Weiss and S.L. Semiatin: Mater. Sci. Engg. A, 1998, vol. A243, pp. 46-65.CrossRefGoogle Scholar
  21. 21.
    C. Li, X.-Y. Zhang, K.-C. Zhou, and C.-Q. Peng: Mater. Sci. Eng. A, 2012, vol. A558, pp. 668–74.CrossRefGoogle Scholar
  22. 22.
    N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1944-1954.CrossRefGoogle Scholar
  23. 23.
    N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson: Titanium 2011: Science and Technology, L. Zhou, H. Chang, Y. Lu, and D. Xu, eds., Science Press, Beijing, 19–24 June, 2011, vol. I, pp. 226–30.Google Scholar
  24. 24.
    C.F. Yolton, F.H. Froes, and R.F. Malone: Metall. Trans. A, 1979, vol. 10A, pp. 132-134.CrossRefGoogle Scholar
  25. 25.
    M.R. Barnett: ISIJ. Int., 1998, vol. 38, pp. 78-85.CrossRefGoogle Scholar
  26. 26.
    L.E. Murr and E.V. Esquivel: J. Mater. Sci., 2004, vol. 39, pp.1153-1168.CrossRefGoogle Scholar
  27. 27.
    Y. Yang, H.G. Zheng, Z.D. Zhao, Q. Zhang, Q.M. Zhang, F. Jiang, and X.M. Li: Mater. Sci. Engg. A, 2011, vol. A528, pp. 7506-7513.CrossRefGoogle Scholar
  28. 28.
    G. Qiang, W. Qing, S.D. Li, H. Xiu-Li, W. Gao-Hui: Mater. Sci. Engg. A, 2010, vol. A527, pp. 4229-4232.CrossRefGoogle Scholar
  29. 29.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd edn., Elsevier, Oxford, 2004.Google Scholar
  30. 30.
    P. Manda, U. Chakkingal, and A.K. Singh: Mater. Charact., 2014, vol. 96, pp. 151–57.CrossRefGoogle Scholar
  31. 31.
    D. Raabe and K. Lucke: Maters. Sci. Forum, 1994, vols. 157-162, pp. 597-610.CrossRefGoogle Scholar
  32. 32.
    D. Raabe and K. Lucke: Scripta Metall., 1992, vol. 27, pp. 1533-1538.CrossRefGoogle Scholar
  33. 33.
    A.K. Singh, A. Bhattacharjee, and A.K. Gogia: Mater. Sci. Engg. A, 1999, vol. A270, pp. 225-230.CrossRefGoogle Scholar
  34. 34.
    N.P. Gurao, A.A. Ali, and S. Suwas: Mater. Sci. Engg. A, 2009, vol. A504, pp. 24-35.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Premkumar Manda
    • 1
  • P. Ghosal
    • 1
  • Uday Chakkingal
    • 2
  • A. K. Singh
    • 1
  1. 1.Defence Metallurgical Research LaboratoryHyderabadIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology Madras (IIT Madras)ChennaiIndia

Personalised recommendations