Metallurgical and Materials Transactions A

, Volume 46, Issue 5, pp 1927–1947 | Cite as

Texture Development and Plastic Deformation in a Pilgered Zircaloy-4 Tube

  • Jaiveer Singh
  • Sivasambu Mahesh
  • Gulshan Kumar
  • Prita Pant
  • D. Srivastava
  • G. K. Dey
  • N. Saibaba
  • I. Samajdar


The development of microstructure and crystallographic texture with effective strain at three through-thickness locations (near rolls, center, and near mandrel) in a partly pilgered Zircaloy-4 tube is described. Pilgering is found to eliminate through-thickness variation in grain size in the starting hot-extruded material and to generate location-dependent asymmetries in crystallographic texture. Deformation texture development during pilgering is modeled with polycrystal plasticity by idealizing the metal flow pattern as axisymmetric flow through a convergent channel. Good qualitative comparison of the predicted and experimental post-pilgering textures is obtained, provided location-dependent transverse shear component is superposed on the gross flow field, and localized deformation at grain boundaries is allowed. Frictional forces between tube and die are deduced from these observations.


Pole Figure Crystallographic Texture Prismatic Slip Boundary Shear Pyramidal Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by the Board of Research in Nuclear Science (BRNS) and by the National Facility of Texture and OIM, a DST-IRPHA facility at IIT Bombay.


  1. 1.
    O. Strehlau: Tube Pipe J., 2006, pp. 1–4.Google Scholar
  2. 2.
    J. Osika, H. Palkowski, K. Swiatkowski, D. Pociecha, and A. Kula: Arch. Metall. Mater., 2009, vol. 54, pp. 1239–51.Google Scholar
  3. 3.
    B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, 2007, pp. 289–97.Google Scholar
  4. 4.
    B.A. Cheadle, C.E. Ells, and W. Evans: J. Nucl. Mater., 1967, vol. 23, pp. 199–208.CrossRefGoogle Scholar
  5. 5.
    E. Tenckhoff: ASTM Spec. Tech. Publ. 966, 1988, pp. 1–77.Google Scholar
  6. 6.
    N. Saibaba: J. Nucl. Mater., 2008, vol. 383, pp. 63–70.CrossRefGoogle Scholar
  7. 7.
    H. Abe, L.K. Takeda, A. Uehira, H. Anada, and M. Furugen: ASTM Spec. Tech. Publ. 1354, 2000, pp. 425–59.Google Scholar
  8. 8.
    H. Abe and M. Furugen: J. Mater. Process. Technol., 2012, vol. 212, pp. 1687–93.CrossRefGoogle Scholar
  9. 9.
    A. Gaillac, C. Lemaignan, and P. Barberis: J. ASTM Int., 2011, vol. 8, pp. 1–16.CrossRefGoogle Scholar
  10. 10.
    C.S. Cook, G.P. Sabol, K.R. Sekera, and S.N. Randall: ASTM Spec. Tech. Publ. 1132, 1991, pp. 80–95.Google Scholar
  11. 11.
    E. Tenckhoff: J. ASTM Int., 2005, vol. 2, pp. 1–26.CrossRefGoogle Scholar
  12. 12.
    S.S. Bhadauria, M.S. Hora, and K.K. Pathak: J. Solid Mech., 2009, vol. 1, pp. 226–32.Google Scholar
  13. 13.
    R.W. Davies, M.A. Khaleel, W.C. Kinsel, and H.M. Zbib: J. Eng. Mater. Technol., 2002, vol. 124, pp. 125–34.CrossRefGoogle Scholar
  14. 14.
    Y. Choi, E.J. Shin, and H. Inoue: Phys. B, 2006, vol. 385-386, pp. 529–31.CrossRefGoogle Scholar
  15. 15.
    V.M. Allen, M. Preuss, J.D. Robson, and R.J. Comstock: Mater. Sci. Forum, 2005, vol. 495-497, pp. 675–80.CrossRefGoogle Scholar
  16. 16.
    R. Krishnan and M.K. Asundi: in Proc. Indian Acad. Sci. (Eng. Sci.) Vol. 4, Pt. 1, 1981, pp. 41–56.Google Scholar
  17. 17.
    E. Tenckhoff and P.L. Rittenhouse: ASTM Spec. Tech. Publ. 458, 1969, pp. 50–67.Google Scholar
  18. 18.
    G. Dressler, K.H. Matucha, and P. Wincierz: Can. Metall. Q., 1972, vol. 11, pp. 177–84.CrossRefGoogle Scholar
  19. 19.
    K. Kallstrom: Can. Metall. Q., 1972, vol. 11, pp. 185–98.CrossRefGoogle Scholar
  20. 20.
    Y. Choi and H. Inoue: Mater. Trans., 2010, vol. 51, pp. 652–58.CrossRefGoogle Scholar
  21. 21.
    E. Girard, R. Guillen, P. Weisbecker, and M. Francois: J. Nucl. Mater., 2001, vol. 294, pp. 330–38.CrossRefGoogle Scholar
  22. 22.
    R. Guillen, C. Cossu, M. Franc, and E. Girard: J. Nucl. Mater., 1998, vol. 255, pp. 174–79.CrossRefGoogle Scholar
  23. 23.
    R. Guillen, J.L. Feron, J.L. Glimois, F. Hunt, J. Le Pape, and J. Senevat: Textures Microstruct., 1991, vol. 14-18, pp. 519–24.CrossRefGoogle Scholar
  24. 24.
    N.P. Gurao, H. Akhiani, and J.A. Szpunar: J. Nucl. Mater., 2014, vol. 453, pp. 158–68.CrossRefGoogle Scholar
  25. 25.
    P.S. Godavarti, S. Hussien, and K. Linga Murty: Metall. Trans. A, 1988, vol. 19A, pp. 1243–55.CrossRefGoogle Scholar
  26. 26.
    K.V. Mani Krishna, A. Sain, I. Samajdar, G. Dey, D. Srivastava, S. Neogy, R. Tewari, and S. Banerjee: Acta Mater., 2006, vol. 54, pp. 4665–75.Google Scholar
  27. 27.
    R.P. Marshall: J. Nucl. Mater., 1967, vol. 24, pp. 49–59.CrossRefGoogle Scholar
  28. 28.
    K. Vaibhaw, S.V.R. Rao, S.K. Jha, N. Saibaba, and R.N. Jayaraj: J. Nucl. Mater., 2008, vol. 383, pp. 71–77.CrossRefGoogle Scholar
  29. 29.
    S. R. MacEwen and C. Tome: ASTM Spec. Tech. Publ. 939, 1987, pp. 631–50.Google Scholar
  30. 30.
    M. Furugen and C. Hayashi: J. Mech. Work. Technol., 1984, vol. 10, pp. 273–86.CrossRefGoogle Scholar
  31. 31.
    J.L. Aubin, E. Girard, and P. Montmitonnet: ASTM Spec. Tech. Publ. 1245, 1994, pp. 245–63.Google Scholar
  32. 32.
    S. Mulot, A. Hacquin, P. Montmitonnet, and J.-L. Aubin: J. Mater. Process. Technol., 1996, vol. 60, pp. 505–12.CrossRefGoogle Scholar
  33. 33.
    P. Montmitonnet, R. Loge’, M. Hamery, Y. Chastel, J.-L. Doudoux, and J.-L. Aubin: J. Mater. Process. Technol., 2002, vol. 125–126, pp. 814–20.Google Scholar
  34. 34.
    B. Lodej, K. Niang, P. Montmitonnet, and J.-L. Aubin: J. Mater. Process. Technol., 2006, vol. 177, pp. 188–91.CrossRefGoogle Scholar
  35. 35.
    M. Harada, A. Honda, and S. Toyoshima: J. ASTM Int., 2005, vol. 2, pp. 1–14.CrossRefGoogle Scholar
  36. 36.
    R.A. Lebensohn, M.I. Gonzalez, C.N. Tome, and A.A. Pochettino: J. Nucl. Mater., 1996, vol. 229, pp. 57–64.CrossRefGoogle Scholar
  37. 37.
    U.F. Kocks, C.N. Tomé, and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, U.K., 1998.Google Scholar
  38. 38.
    S. Mahesh: Int. J. Plast., 2009, vol. 25, pp. 752–67.CrossRefGoogle Scholar
  39. 39.
    Y. Choi and H. Inoue: Mater. Sci. Forum, 2007, vol. 558-559, pp. 1379–82.CrossRefGoogle Scholar
  40. 40.
    K.V. Mani Krishna, S.K. Sahoo, I. Samajdar, S. Neogy, R. Tewari, D. Srivastava, G.K. Dey, G. H. Das, N. Saibaba, S. Banarjee 2008. J. Nucl. Mater 383:78–85.CrossRefGoogle Scholar
  41. 41.
    F. E. Hauser, P. R. Landon, and J. E. Dorn: Trans. ASM, 1956, vol. 48, pp. 986–1002.Google Scholar
  42. 42.
    B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3rd Edition, Prentice Hall, New Jersey, 2001, pp. 416–21.Google Scholar
  43. 43.
    D. Raabe and K. Lücke: Phys. Status Solidi, 1993, vol. 180, pp. 59–65.CrossRefGoogle Scholar
  44. 44.
    M.M. Nowell and S.I. Wright: Ultramicroscopy, 2005, vol. 103, pp. 41–58.CrossRefGoogle Scholar
  45. 45.
    T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein: Introduction to Algorithms, Third Edit, MIT press, Cambridge, 2009.Google Scholar
  46. 46.
    G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.Google Scholar
  47. 47.
    R.A. Lebensohn and C.N. Tomé: Acta Met. Mater., 1993, vol. 41, pp. 2611–24.CrossRefGoogle Scholar
  48. 48.
    C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner: Acta Mater., 2001, vol. 49, pp. 3085–96.CrossRefGoogle Scholar
  49. 49.
    J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.CrossRefGoogle Scholar
  50. 50.
    G.Y. Chin, W.F. Hosford, and D.R. Mendorf: Proc.of R. Soc. London, 1969, vol. 309, pp. 433–56.CrossRefGoogle Scholar
  51. 51.
    L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 421–30.CrossRefGoogle Scholar
  52. 52.
    L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, and C.N. Tomé: Acta Mater., 2009, vol. 57, pp. 6047–56.CrossRefGoogle Scholar
  53. 53.
    M. A. Meyers and E. Ashworth: Phil. Mag. A, 1982, vol. 46, pp. 737–59.CrossRefGoogle Scholar
  54. 54.
    N. Keskar, S. Mukherjee, K.V. Mani Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty, and I. Samajdar: Acta Mater., 2014, vol. 69, pp. 265–74.CrossRefGoogle Scholar
  55. 55.
    P.G. Partridge: Philos. Mag., 1965, vol. 12, pp. 1043–54.CrossRefGoogle Scholar
  56. 56.
    P.G. Partridge: Met. Rev., 1967, vol. 12, pp. 169–94.CrossRefGoogle Scholar
  57. 57.
    W.J. McG. Tegart: Philos. Mag., 1964, vol. 9, pp. 339–41.Google Scholar
  58. 58.
    M.L. Picklesimer: J. Electrochem. Soc., 1966, vol. 4, pp. 289–300.Google Scholar
  59. 59.
    J.L. Martin and R.E. Reed-Hill: Trans. Met. Soc. AIME, 1964, vol. 230, pp. 780–85.Google Scholar
  60. 60.
    E.J. Rapperport: Acta Metall., 1959, vol. 7, pp. 254–60.CrossRefGoogle Scholar
  61. 61.
    O. Engler, M. Crumbach, and S. Li: Acta Mater., 2005, vol. 53, pp. 2241–57.CrossRefGoogle Scholar
  62. 62.
    G. Sachs: Z. Verein. Deutsch. Ing., 1928, vol. 72, pp. 734–47.Google Scholar
  63. 63.
    A. Staroselsky and L. Anand: Int. J. Plast., 2003, vol. 19, pp. 1843–64.CrossRefGoogle Scholar
  64. 64.
    H. Abe, K. Matsuda, T. Hama, T. Konishi, and M. Furugen: ASTM Spec. Tech. Publ. 1245, 1994, pp. 285–306.Google Scholar
  65. 65.
    J.J. Kearns: Thermal Expansion and Preferred Orientation in Zircaloy, Pittsburgh, PA (USA), 1965, p. WAPD-TM-472.Google Scholar
  66. 66.
    K.V. Mani Krishna, D. Srivastava, G.K. Dey, V. Hiwarkar, I. Samajdar, and N. Saibaba: J. Nucl. Mater., 2011, vol. 414, pp. 492–97.CrossRefGoogle Scholar
  67. 67.
    J.J. Kearns: J. Nucl. Mater., 2001, vol. 299, pp. 171–74.CrossRefGoogle Scholar
  68. 68.
    R.G. Ballinger and R.M. Pelloux: J. Nucl. Mater., 1981, vol. 97, pp. 231–53.CrossRefGoogle Scholar
  69. 69.
    J.A. Gruber, S.A. Brown, and G.A. Lucadamo: J. Nucl. Mater., 2011, vol. 408, pp. 176–82.CrossRefGoogle Scholar
  70. 70.
    K.L. Murty and I. Charit: Prog. Nucl. Energy, 2006, vol. 48, pp. 325–59.CrossRefGoogle Scholar
  71. 71.
    N. Nagai, T. Kakuma, and K. Fujita: ASTM Spec. Tech. Publ. 754, 1982, pp. 26–38.Google Scholar
  72. 72.
    T. Konishi, M. Honji, T. Kojima, and H. Abe: ASTM Spec. Tech. Publ. 939, 1987, pp. 653–61.Google Scholar
  73. 73.
    V. Randle and O. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, CRC Press, 2000.Google Scholar
  74. 74.
    K.-H. Kim and D.N. Lee: Acta Mater., 2001, vol. 49, pp. 2583–95.CrossRefGoogle Scholar
  75. 75.
    J. Sarkar, S. Cao, and S. Saimoto: Mater. Sci. Forum, 2005, vol. 495-497, pp. 567–72.CrossRefGoogle Scholar
  76. 76.
    C.S. Lee, R.E. Smallman, and B.J. Duggan: Mater. Sci. Technol., 1994, vol. 10, pp. 149–54.CrossRefGoogle Scholar
  77. 77.
    S.K. Sahoo, V.D. Hiwarkar, A. Majumdar, I. Samajdar, P. Pant, G.K. Dey, D. Srivastav, R. Tiwari, and S. Banerjee: Mater. Sci. Eng. A, 2009, vol. 518, pp. 47–55.CrossRefGoogle Scholar
  78. 78.
    S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, P. Pant, G.K. Dey, D. Srivastav, R. Tewari, and S. Banerjee: Mater. Sci. Technol., 2010, vol. 26, pp. 104–14.CrossRefGoogle Scholar
  79. 79.
    H. Numakura, Y. Minonishi, and M. Koiwa: Philos. Mag. A, 1991, vol. 63, pp. 1077–84.CrossRefGoogle Scholar
  80. 80.
    S. Sahoo, V. Hiwarkar, I. Samajdar, G. Dey, D. Srivastav, R. Tiwari, and S. Banerjee: Scr. Mater., 2007, vol. 56, pp. 963–66.CrossRefGoogle Scholar
  81. 81.
    C.S. Lee and B.J. Duggan: Acta Metall. Mater., 1993, vol. 41, pp. 2691–99.CrossRefGoogle Scholar
  82. 82.
    S. Mahesh, I.J. Beyerlein, and C.N. Tomé: Scr. Mater., 2005, vol. 53, pp. 965–69.CrossRefGoogle Scholar
  83. 83.
    C.F. Gu and L.S. Tóth: Acta Mater., 2011, vol. 59, pp. 5749–57.CrossRefGoogle Scholar
  84. 84.
    S. Mahesh: Int. J. Plast., 2010, vol. 26, pp. 42–64.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Jaiveer Singh
    • 1
  • Sivasambu Mahesh
    • 2
  • Gulshan Kumar
    • 1
  • Prita Pant
    • 1
  • D. Srivastava
    • 3
  • G. K. Dey
    • 3
  • N. Saibaba
    • 4
  • I. Samajdar
    • 1
  1. 1.Department of Metallurgical Engineering & Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Aerospace EngineeringIndian Institute of Technology MadrasChennaiIndia
  3. 3.Materials Science DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Nuclear Fuel ComplexHyderabadIndia

Personalised recommendations