Metallurgical and Materials Transactions A

, Volume 46, Issue 4, pp 1488–1499 | Cite as

The Co-Sb-Ga System: Isoplethal Section and Thermodynamic Modeling

  • Wojciech Gierlotka
  • Sinn-wen ChenEmail author
  • Wei-an Chen
  • Jui-shen Chang
  • G. Jeffrey Snyder
  • Yinglu Tang


The Co-Sb-Ga ternary system is an important thermoelectric material system, and its phase equilibria are in need of further understanding. The CoSb3-GaSb isoplethal section is experimentally determined in this study. Phase equilibria of the ternary Co-Sb-Ga system are assessed, and the system’s thermodynamic models are developed. In addition to the terminal phases and liquid phase, there are six binary intermediate phases and a ternary Co3Sb2Ga4 phase. The Ga solution in the CoSb3 compound is described by a dual-site occupation (GaVF) x Co4Sb12−x/2(GaSb) x/2 model. Phase diagrams are calculated using the developed thermodynamic models, and a reaction scheme is proposed based on the calculation results. The calculated results are in good agreement with the experimentally determined phase diagrams, including the CoSb3-GaSb isoplethal section, the liquidus projection, and an isothermal section at 923 K (650 °C). The dual-site occupation (GaVF) x Co4Sb12−x/2(GaSb) x/2 model gives good descriptions of both phase equilibria and thermoelectric properties of the CoSb3 phase with Ga doping.


Isothermal Section GaSb Thermoelectric Property CoSb Liquidus Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial supports of the National Science Council of Taiwan (NSC101-3113-P-008-001 and NSC102-2221-E-259 -034).


  1. 1.
    K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, and C. Wan: J. Am. Ceram. Soc., 2013, Vol. 96(1), pp. 1-23.CrossRefGoogle Scholar
  2. 2.
    A.P. Goncalves, E.B. Lopes, G. Delaizir, J.B. Vaney, B. Lenoir, A. Piarristeguy, A. Pradel, J. Monnier, P. Ochin, and C. Godart: J. Solid State Chem., 2012, Vol. 193, pp. 26-30.CrossRefGoogle Scholar
  3. 3.
    Y. Pei, H. Wang, and G.J. Snyder: Adv. Mater., 2012, Vol. 24, pp. 6125-6135.CrossRefGoogle Scholar
  4. 4.
    J.R. Szczech, J.M. Higgins, and S. Jin: J. Mater. Chem., 2011, Vol. 21, pp. 4037-4055.CrossRefGoogle Scholar
  5. 5.
    S.K. Bux, J.P. Fleurial, and R.B. Kaner: Chem. Commun., 2010, Vol. 46, pp. 8311-8324.CrossRefGoogle Scholar
  6. 6.
    Z. Xiong, X. Chen, X. Huang, S. Bai, and L. Chen: Acta Mater., 2010, Vol. 58, pp. 3995-4002.CrossRefGoogle Scholar
  7. 7.
    A. Harnwunggmoung, K. Kurosaki, T. Plirdpring, T. Sugahara, Y. Ohishi, H. Muta, and S. Yamanaka: J. Appl. Phys., 2011, Vol. 110, pp. 013521.CrossRefGoogle Scholar
  8. 8.
    T. Luo, R. Liu, P. Qiu, Y. Zhou, Z. Lin, Y. Lei, X. Shi, W. Zhang, and L. Chen: J. Electron. Mater., 2012, Vol. 41(12), pp. 3402-3410.CrossRefGoogle Scholar
  9. 9.
    T. Su, C. He, H. Li, X. Guo, S. Li, H. Ma, and X. Jia: J. Electron. Mater., 2013, Vol. 42(1), pp. 109-113.CrossRefGoogle Scholar
  10. 10.
    Y. Qiu, L. Xi, X. Shi, P. Qiu, W. Zhang, L. Chen, J.R. Salvador, J.Y. Cho, J. Yang, Y.-C. Chien, S.-W. Chen, Y. Tang, and G.J. Snyder: Adv. Funct. Mater., 2013, vol. 23, pp. 3194–3203.CrossRefGoogle Scholar
  11. 11.
    S.L. Markovski, J.A. van Beek, R.C.J. Schiepers, A.A. Kodentsov, and F.J.J. van Loo: J. Chim. Phys., 1997, Vol. 94, pp. 992-997.Google Scholar
  12. 12.
    S.-W. Chen, Y.-C. Chien, J.-S. Chang, and G.J. Snyder: Unpublished research, 2014.Google Scholar
  13. 13.
    A. Chari, A. Garay, and R. Arroyave: Calphad, 2010, Vol. 34, pp. 189-195.CrossRefGoogle Scholar
  14. 14.
    I. Ansara, C. Chatillon, H.L. Lukas, T. Nihizawa, H. Othani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, and T. Anderson: Calphad, 1994, Vol. 18(2), pp.177-222.CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, C. Li, Z. Du, and T. Geng: Calphad, 2008, Vol. 32, pp. 56-63.CrossRefGoogle Scholar
  16. 16.
    P. Feschotte, and D. Lorin: J. Less Common Metals, 1989, Vol. 155, pp. 255-269.CrossRefGoogle Scholar
  17. 17.
    L.D. Dudkin, and N.K. Abrikosov: Zh. Neorgan. Khim., 1956, Vol. 1, pp. 2096-2105.Google Scholar
  18. 18.
    SGTE Unary Elements Database v.5, Scientific Group Thermodata Europe, 2009.Google Scholar
  19. 19.
    H.L. Lukas, S.G. Fries, and B. Sundman: Computational thermodynamics, Cambridge University Press, Cambridge, 2007.CrossRefGoogle Scholar
  20. 20.
    Pandat: A Computational Tool Developed on the Basis of the CALPHAD Approach for Multi-component Phase Diagram Calculation by CompuTherm, 2014.Google Scholar
  21. 21.
    Termocal: A computational Tool Developed on the Basis of the CALPHAD Approach for Multi-component Phase Diagram Calculation by Thermo-Calc Software, 2013.Google Scholar
  22. 22.
    R. Schmid-Fetzer, D. Andersson, P.Y. Chevalier, L. Eleno, O. Fabrichnaya, U.R. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr and M. Zinkevich: Calphad, 2007, Vol. 31, pp. 38-52.CrossRefGoogle Scholar
  23. 23.
    S.-L. Chen, Y. Yang, S.-W. Chen, X.-G. Lu, and Y.A. Chang: J. Phase Equilib. Diff., 2009, Vol. 30, pp. 429-434.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Wojciech Gierlotka
    • 1
  • Sinn-wen Chen
    • 2
    Email author
  • Wei-an Chen
    • 2
  • Jui-shen Chang
    • 2
  • G. Jeffrey Snyder
    • 3
    • 4
  • Yinglu Tang
    • 3
  1. 1.Department of Materials Science and EngineeringNational Dong Hwa UniversityHualienTaiwan R.O.C.
  2. 2.Department of Chemical EngineeringNational Tsing Hua UniversityHsinchuTaiwan R.O.C.
  3. 3.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations