Advertisement

Metallurgical and Materials Transactions A

, Volume 46, Issue 4, pp 1597–1609 | Cite as

Precise Analysis of Microstructural Effects on Mechanical Properties of Cast ADC12 Aluminum Alloy

  • Mitsuhiro OkayasuEmail author
  • Shuhei Takeuchi
  • Masaki Yamamoto
  • Hiroaki Ohfuji
  • Toshihiro Ochi
Article

Abstract

The effects of microstructural characteristics (secondary dendrite arm spacing, SDAS) and Si- and Fe-based eutectic structures on the mechanical properties and failure behavior of an Al-Si-Cu alloy are investigated. Cast Al alloy samples are produced using a special continuous-casting technique with which it is easy to control both the sizes of microstructures and the direction of crystal orientation. Dendrite cells appear to grow in the casting direction. There are linear correlations between SDAS and tensile properties (ultimate tensile strength σ UTS, 0.2 pct proof strength σ 0.2, and fracture strain ε f). These linear correlations, however, break down, especially for σ UTS vs SDAS and ε f vs SDAS, as the eutectic structures become more than 3 μm in diameter, when the strength and ductility (σ UTS and ε f) decrease significantly. For eutectic structures larger than 3 μm, failure is dominated by the brittle eutectic phases, for which SDAS is no longer strongly correlated with σ UTS and ε f. In contrast, a linear correlation is obtained between σ 0.2 and SDAS, even for eutectic structures larger than 3 μm, and the eutectic structure does not have a strong effect on yield behavior. This is because failure in the eutectic phases occurs just before final fracture. In situ failure observation during tensile testing is performed using microstructural and lattice characteristics. From the experimental results obtained, models of failure during tensile loading are proposed.

Keywords

Ultimate Tensile Strength Casting Speed Eutectic Phase Eutectic Structure Cast Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a grant (Grant-in-Aid for Scientific Research (C), 2014) from the Japanese Government (Ministry of Education, Science, Sports and Culture) and the Light Metal Educational Foundation Inc.

References

  1. 1.
    A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method, Mater. Trans. JIM 33(1992)937–945.CrossRefGoogle Scholar
  2. 2.
    O. Kuwazuru, Y. Murata, Y. Hangai, T. Utsunomiya, S. Kitahara, N. Yoshikawa, X-ray CT inspection for porosities and its effect on fatigue of die cast aluminum alloy, J. Solid Mech. Mater. Eng. 2(2008)1220–1231.CrossRefGoogle Scholar
  3. 3.
    A.K.M. Aziz Ahamed, H. Kato, Influence of casting defects on tensile properties of ADC12 aluminum alloy die-castings, Mater. Trans. JIM 49(2008)1621–1628.CrossRefGoogle Scholar
  4. 4.
    H.D. Zhao, F. Wang, Y.Y. Li, W. Xia, Experimental and numerical analysis of gas entrapment defects in plate ADC12 die castings, J. Mater. Process. Technol. 209(2009)4537–4542.CrossRefGoogle Scholar
  5. 5.
    S. Jana, R.S. Mishra, J.B. Baumann, G. Grant, Effect of friction stir processing on fatigue behavior of an investment cast Al–7Si–0.6 Mg alloy, Acta Mater. 58(2010)989–1003.CrossRefGoogle Scholar
  6. 6.
    M.S. Kabir, E.A. Ashrafi, T.I. Minhaj, M.M. Islam, Effect of foundry variables on the casting quality of as-cast LM25 aluminum alloy, Int. J. Eng. Adv. Technol. 3(2014)115–120.Google Scholar
  7. 7.
    K.M. Youssef, R.O. Scattergood, K.L. Murty, C.C. Koch, Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility, Scripta Mater. 54(2006)251–256.CrossRefGoogle Scholar
  8. 8.
    Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties, Metall. Mater. Trans. A 31(2000)691–701.CrossRefGoogle Scholar
  9. 9.
    C.E. Carlton, P.J. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials?, Acta Mater. 55(2007)3749–3756.CrossRefGoogle Scholar
  10. 10.
    Q.G. Wang, D. Apelian, D.A. Lados, Fatigue behavior of A356/357 aluminum cast alloys. Part II – Effect of microstructural constituents, J. Light Met. 1(2001)85–97.CrossRefGoogle Scholar
  11. 11.
    M. Kobayashi, H. Hara, H. Toda, D. Sugiyama, N. Kuroda, Fatigue behaviour of hot worked cast aluminum alloys with different Si contents, Int. J. Cast Met. Res. 25(2012)31–37.CrossRefGoogle Scholar
  12. 12.
    Q.G. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357, Metall. Mater. Trans. A 34(2003)2887–2899.CrossRefGoogle Scholar
  13. 13.
    Q.G. Wang, Plastic deformation behavior of aluminum casting alloys A356/357, Metall. Mater. Trans. A 35(2004)2707–2718.CrossRefGoogle Scholar
  14. 14.
    M.A. Irfan, D. Schwam, A. Karve, R. Ryder, Porosity reduction and mechanical properties improvement in die cast engine blocks, Mater. Sci. Eng. A 535(2012)108–114.CrossRefGoogle Scholar
  15. 15.
    S. Sengupta, H. Soda, A. Mclean, Microstructure and properties of a bismuth–indium–tin eutectic alloy, J. Mater. Sci. 37(2002)1747–1758.CrossRefGoogle Scholar
  16. 16.
    M. Okayasu, K. Ota, S. Takeuchi, H. Ohfuji, T. Shiraishi, Influence of microstructural characteristics on mechanical properties of ADC12 aluminum alloy, Mater. Sci. Eng. A 592(2014)189–200.CrossRefGoogle Scholar
  17. 17.
    A. Ohno, Solidification, Springer, Berlin, 1987, pp.113–118.CrossRefGoogle Scholar
  18. 18.
    M. Okayasu, Y. Ohkura, S. Takeuchi, S. Takasu, H. Ohfuji, T. Shiraishi, A study of the mechanical properties of an Al–Si–Cu alloy (ADC12) produced by various casting processes, Mater. Sci. Eng. A 543(2012)185–192.CrossRefGoogle Scholar
  19. 19.
    H. Xin, Y. Hong, Effect of trace La addition on the microstructure and mechanical property of as-cast ADC12 Al alloy, J. Wuhan Univ. Tech.-Mater. Sci. Ed. 28(2013)202–205.CrossRefGoogle Scholar
  20. 20.
    M. Vandyoussefi, A.L. Greer, Application of cellular automaton – finite element model to the grain refinement of directionally solidified Al-4.15 wt pct Mg alloys, Acta Mater. 50(2002)1693–1703.CrossRefGoogle Scholar
  21. 21.
    M. Okayasu, S. Takasu, M. Mizuno, Relevance of instrumented nano-indentation for the assessment of the mechanical properties of eutectic crystals and α-Al grain in cast aluminum alloys, J. Mater. Sci. 47(2012)241–250.CrossRefGoogle Scholar
  22. 22.
    X. Hu, F. Jiang, F. Ai, H. Yan, Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy, J. Alloy Compd. 538(2012)21–27.CrossRefGoogle Scholar
  23. 23.
    R.N. Lumley, N. Deeva, R. Larsen, J. Gembarovic, J. Freeman, The role of alloy composition and T7 heat treatment in enhancing thermal conductivity of aluminum high pressure diecastings, Metall. Mater. Trans. A 44(2013)1074–1086.CrossRefGoogle Scholar
  24. 24.
    Y. Kawaguchi, M. Sugamata, J. Kaneko, Effect of rapid solidification on the mechanical properties of aluminum casting alloys, J. Jpn. Inst. Light Met. 47(1997)3–9. (Japanese).CrossRefGoogle Scholar
  25. 25.
    L. Ceschini, A. Morri, A. Morri, A. Gamberini, S. Messieri, Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminum alloy, Mater. Des. 30(2009)4525–4531.CrossRefGoogle Scholar
  26. 26.
    L.Y. Zhang, Y.H. Jiang, Z. Ma, S.F. Shan, Y.Z. Jia, C.Z. Fan, W.K. Wang, Effect of cooling rate on solidified microstructure and mechanical properties of aluminum-A356 alloy, J. Mater. Process. Technol. 207(2008)107–111.CrossRefGoogle Scholar
  27. 27.
    G. Ran, J. Zhou, Q.G. Wang, The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 cast aluminum alloy, J. Alloy. Comp. 421(2006)80–86.CrossRefGoogle Scholar
  28. 28.
    A.A. Benzerga, S.S. Hong, K.S. Kim, A. Needleman, E.V.D. Giessen, Smaller is softer: an inverse size effect in a cast aluminum alloy, Acta Mater. 49(2001)3071–3083.CrossRefGoogle Scholar
  29. 29.
    Q.G. Wang, M. Praud, A. Needleman, K.S. Kim, J.R. Griffiths, C.J. Davidson, C.H. Cáceres, A.A. Benzerga, Size effects in aluminum alloy castings, Acta Mater. 58(2010)3006–3013.CrossRefGoogle Scholar
  30. 30.
    I. Kovács, J. Lendvai, T. Ungár, G. Groma, J. Lakner, Mechanical properties of AlZnMg alloys, Acta Metall. 28(1980)1621–1631.CrossRefGoogle Scholar
  31. 31.
    M. Tiryakioğlu, J. Campbell, N.D. Alexopoulos, On the ductility of cast Al-7 pct Si-Mg alloys, Metall. Mater. Trans. A 40(2009)1000–1007.CrossRefGoogle Scholar
  32. 32.
    D.G. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminum alloys, Prog. Mater. Sci. 49(2004)629–711.CrossRefGoogle Scholar
  33. 33.
    I. Brooks, P. Lin, G. Palumbo, G.D. Hibbard, U. Erb, Analysis of hardness–tensile strength relationships for electroformed nanocrystalline materials, Mater. Sci. Eng. A 491(2008)412–419.CrossRefGoogle Scholar
  34. 34.
    Y.-L. Shen, N. Chawla, On the correlation between hardness and tensile strength in particle reinforced metal matrix composites, Mater. Sci. Eng. A 297(2001)44–47.CrossRefGoogle Scholar
  35. 35.
    J.R. Cahoon, W.H. Broughton, A.R. Kutzak, The determination of yield strength from hardness measurements, Metall. Trans. 2(1971)1979–1983.Google Scholar
  36. 36.
    Q.G. Wang, C.H. Caceres, J.R. Griffiths, Damage by eutectic particle cracking in aluminum casting alloys A356/357, Metall. Mater. Trans. A 34(2003)2901–2912.CrossRefGoogle Scholar
  37. 37.
    M. Okayasu, N. Nishi, K. Kanazawa, Effects of silicon contents on tensile properties of Al–Si–Cu alloy die castings, J. Jpn. Foundry Eng. Soc. 70(1998)266–272.Google Scholar
  38. 38.
    K.H.W. Seah, J. Hemanth, S.C. Sharma, Effect of the cooling rate on the dendrite arm spacing and the ultimate tensile strength of cast iron, J. Mater. Sci. 33(1998)23–28.CrossRefGoogle Scholar
  39. 39.
    Q.G. Wang, C.H. Cáceres, The fracture mode in Al-Si-Mg casting alloys, Mater. Sci. Eng. A 241(1998)72–82.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Mitsuhiro Okayasu
    • 1
    Email author
  • Shuhei Takeuchi
    • 1
  • Masaki Yamamoto
    • 1
  • Hiroaki Ohfuji
    • 2
  • Toshihiro Ochi
    • 3
  1. 1.Department of Materials Science and EngineeringEhime UniversityMatsuyamaJapan
  2. 2.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  3. 3.Ochi Foundry IncSaijoJapan

Personalised recommendations