Metallurgical and Materials Transactions A

, Volume 46, Issue 4, pp 1588–1596 | Cite as

Interpretation of Fracture Toughness and R-Curve Behavior by Direct Observation of Microfracture Process in Ti-Based Dendrite-Containing Amorphous Alloys

  • Changwoo Jeon
  • Choongnyun Paul Kim
  • Hyoung Seop Kim
  • Sunghak LeeEmail author


Fracture properties of Ti-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 μm, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPa√m within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites.


Stress Intensity Factor Amorphous Alloy Deformation Band Amorphous Matrix Compact Tension Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the National Research Foundation of Korea (NRF) Grant (No. 2010-0026981) funded by the Ministry of Education, Science, and Technology, Korea, and by the Brain Korea 21 PLUS Project for Center for Creative Industrial Materials.


  1. 1.
    W. Chen, Y. Wang, J. Qiang, and V. Dong: Acta Mater., 2003, vol. 51, pp. 1899-1907.CrossRefGoogle Scholar
  2. 2.
    H. A. Shivaee, A. Castellero, P. Rizzi, P. Tiberto, H.R.M. Hosseini, and M. Baricco: Met. Mater. Int., 2013, vol. 19, pp. 643-49.CrossRefGoogle Scholar
  3. 3.
    Y.C. Kim, J.M. Park, J.K. Lee, F.H. Bae, W.T. Kim, and D.H. Kim: Mater. Sci. Eng., 2004, vol. A375-377, pp. 749-53.CrossRefGoogle Scholar
  4. 4.
    R. Busch, A. Masuhr, and W.L. Johnson: Mater. Sci. Eng., 2001, vol. A304-306, pp. 97-102.CrossRefGoogle Scholar
  5. 5.
    J.M. Park, H.J. Chang, K.H. Han, W.T. Kim, and D.H. Kim: Scr. Mater., 2005, vol. 53, pp. 1-6.CrossRefGoogle Scholar
  6. 6.
    M. Taboosi, F. Karimzadeh, M.H. Enayati, S. Lee, and H.S. Kim: Met. Mater. Int., 2013, vol. 19, pp. 901-06.Google Scholar
  7. 7.
    D.E. Polk and D. Turnbull: Acta Metall., 1972, vol. 20, pp. 493-98.CrossRefGoogle Scholar
  8. 8.
    C.A. Pampillow: Scr. Metall., 1972, vol. 6, pp. 915-17.CrossRefGoogle Scholar
  9. 9.
    T.E. Kim, S.W. Sohn, J.M. Park, C.W. Bang, W.T. Kim, and D.H. Kim: Met. Mater. Int., 2013, vol. 19, pp. 667-71.CrossRefGoogle Scholar
  10. 10.
    C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901-04.CrossRefGoogle Scholar
  11. 11.
    C.C. Hays, W.L. Johnson, and C.P. Kim: Mater. Sci. Eng., 2001, vol. A304-306, pp. 650-55.CrossRefGoogle Scholar
  12. 12.
    D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085-89.CrossRefGoogle Scholar
  13. 13.
    Y.S. Oh, C.P. Kim, S. Lee, and N.J. Kim: Acta Mater., 2011, vol. 59, pp. 7277-86.CrossRefGoogle Scholar
  14. 14.
    D.J. Ha, C.P. Kim, and S. Lee: Mater. Sci. Eng., 2012, vol. A552, pp. 404-09.CrossRefGoogle Scholar
  15. 15.
    D.J. Ha, C.P. Kim, and S. Lee: Mater. Sci. Eng., 2012, vol. A558, pp. 558-65.CrossRefGoogle Scholar
  16. 16.
    D.L. Davison: Metall. Trans., 1987, vol. 18A, pp. 2115-28.CrossRefGoogle Scholar
  17. 17.
    J.G. Lee, D.-G. Lee, S. Lee, and N.J. Kim: Metall. Mater. Trans., 2004, vol. 35A, pp. 3753-61.CrossRefGoogle Scholar
  18. 18.
    S.R. Nutt and L.M. Duva: Scr. Metall., 1986, vol. 20, pp. 1055-58.CrossRefGoogle Scholar
  19. 19.
    M. Tavoosi, M.H. Enayati, and F. Karimzadeh: Met. Mater. Inter., 2011, vol. 17, pp. 853-56.CrossRefGoogle Scholar
  20. 20.
    D.C. Hofmann, J.-Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 20136-40.CrossRefGoogle Scholar
  21. 21.
    C. Jeon, C.P. Kim, S.-H. Joo, H.S. Kim, and S. Lee: Acta Mater., 2013, vol. 61, pp. 3012-26.CrossRefGoogle Scholar
  22. 22.
    M.W. Lee, H.J. Shin, S.H. Hong, J.T. Kim, H. Choi-Yim, Y. Seo, W.H. Lee, P. Yu, M. Qian, J.K. Lee, and K.B. Kim: Met. Mater. Int., 2014, vol 20, pp. 1-5.CrossRefGoogle Scholar
  23. 23.
    J.G. Lee, K.-S. Sohn, S. Lee, N.J. Kim, and C.P. Kim: Mater. Sci. Eng., 2007, vol. A464, pp. 261-68.CrossRefGoogle Scholar
  24. 24.
    C.-Y. Son, C.K. Kim, S.Y. Shin, and S. Lee: Mater. Sci. Eng., 2009, vol. A508, pp. 15-22.CrossRefGoogle Scholar
  25. 25.
    C. Jeon, C.P. Kim, and S. Lee: Metall. Mater. Trans., 2012, vol. 43A, pp. 3675-86.CrossRefGoogle Scholar
  26. 26.
    J.G. Lee, S.S. Park, D.-G. Lee, S. Lee, and N.J. Kim: Intermetallics, 2004, vol. 12, pp. 1125-31.CrossRefGoogle Scholar
  27. 27.
    B. Kim, J. Do, S. Lee, and I. Park: Mater. Sci. Eng., 2010, vol. A527, pp. 6745-57.CrossRefGoogle Scholar
  28. 28.
    D.-G. Lee, S. Lee, and C.S. Lee: Mater. Sci. Eng., 2004, vol. A366, pp. 25-37.CrossRefGoogle Scholar
  29. 29.
    J.W. Qiao, J.T. Zhang, F. Jiang, Y. Zhang, P.K. Liaw, Y. Ren, and G.L. Chen: Mater. Sci. Eng., 2010, vol. A527, pp. 7752-56.CrossRefGoogle Scholar
  30. 30.
    S. Lee, K.-S. Sohn, C.G. Lee, and B.I. Jung: Metall. Mater. Trans., 1997, vol. 28A, pp. 123-34.CrossRefGoogle Scholar
  31. 31.
    J.J. Lewandowski, M. Shazly, and A. Shmimi Nouri: Scr. Mater., 2006, vol. 54, pp. 337-41.CrossRefGoogle Scholar
  32. 32.
    B. Gludovatz, S.E. Naleway, R.O. Ritchie, and J.J. Kruzic: Acta Mater., 2014, vol. 70, pp. 198-207.CrossRefGoogle Scholar
  33. 33.
    D. Broek: Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Boston, 1982, pp. 297-309.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Changwoo Jeon
    • 1
  • Choongnyun Paul Kim
    • 1
  • Hyoung Seop Kim
    • 1
    • 2
  • Sunghak Lee
    • 1
    • 2
    Email author
  1. 1.Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea
  2. 2.Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations